Multimodal Retrieval-Augmented Generation for
Context-Aware Chatbots

Akos Kranics, Gabor Hosu, Nandor Bandi
Faculty of Mathematics and Computer Science
Babes-Bolyai University
RO-400084 Cluj-Napoca, Romania

{akos.kranics, gabor.hosu}@stud.ubbcluj.ro, nandor.bandi @ubbcluj.ro

Abstract—The widespread adoption of large language models
presents numerous opportunities for enhancing human produc-
tivity. A common challenge is extracting the essential information
from multimodal sources within a short timeframe. While many
existing services aim to address this issue, they primarily focus
on answering general queries rather than supporting the efficient
context management across user inputs.

The proposed paper discusses the management of contexts
arising from multimodal sources, and proposes an application
designed to efficiently process both documents and images while
enabling question-answering based on the content of uploaded
files. To ensure the accuracy and traceability of responses, the
application highlights the specific text segments used during
answer generation, making the sources easy to verify and locate.

The system employs a Retrieval-Augmented Generation (RAG)
approach to effectively extract relevant context from multiple
sources. This enhances the precision and reliability of the answers
provided in response to user queries.

The architecture consists of four main components: a web
application, a cross-platform Android—iOS mobile application, a
central backend server, and a locally hosted microservice. This
paper presents the architecture, functionality, and interaction of
these components, providing a comprehensive overview of the
system from both client- and server-side perspectives.

Index Terms—Retrieval augmented generation, Large language
model, Chatbot, Vector database

I. INTRODUCTION

The proposed platform is designed to help users quickly
and effectively extract information from both documents and
images, aiming to enhance productivity in information-heavy
tasks. With the growing capabilities of large language mod-
els (LLMs), such tools have become increasingly valuable,
especially when users need to find relevant content within
a short time frame. While these models significantly boost
efficiency, the importance of critical thinking and source
validation remains paramount [1].

One of the most common issues users face is having
to sift through lengthy documents just to find a few key
sentences [2], [3]. Several tools, both free and subscription-
based—such as ChatGPT, Deepseek, and Grok—attempt to
address this by allowing users to ask questions directly based
on uploaded documents. However, a major drawback of these
systems is that uploaded files often cannot be carried over
between different conversations, requiring repeated uploads
and disrupting workflow.

Eszter Farkas, Kinga Petkes
Codespring
Software development
RO-400084 Cluj-Napoca, Romania
{farkas.eszter, petkes.kinga} @codespring.ro

The proposed context management approach addresses this
limitation by offering persistent storage of uploaded files and
the ability to link them to any new or existing conversations.
This enables document-focused interactions without the redun-
dancy of re-uploading, making the platform more efficient and
user-friendly than general-purpose chatbots.

This paper presents an overview of the proposed platform,
including its user interface design principles, implemented
functionalities, system architecture, and the technologies and
tools used during development.

II. RELATED WORK

The issue of document context management has been al-
ready addressed by many existing systems. OpenAlI’s Chat-
GPT supports document upload and context sharing across
chats within projects [4]. A similar concept is used in
Anthropic’s Claude chatbot, users can attach documents to
projects or configure an integration with Google drive [5].
While ChatGPT uses fixed size overlapping chunks, Claude
generates a summary sentence for each chunk. Context re-
trieval is achieved via semantic search which is extended with
keyword filter for ChatGPT, and for Claude a hybrid approach
is used that is based on BM25 and uses reranking.

The novelty of the proposed platform lies in the proposal of
an overall architectural blueprint that enables chatbot systems
to integrate multimodal sources into a single context. The
proposed context management solution integrates OCR models
and RAG to derive a single unified context.

III. METHODS

A. Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) [6] enhances LLMs
by addressing their limitations in handling specific tasks with-
out retraining or fine-tuning, which can be resource-intensive.
RAG improves question answering by using external sources,
such as documents, as context for the LLM.

To overcome the LLM’s limited input capacity, RAG uses
natural language processing (NLP) to identify the relevant
context for a user’s question, converting text from source files
into vector embeddings—numerical representations of text
chunks that encode their meaning. The distance between vec-
tors indicates their similarity. To overcome the LLM’s limited

- B
DeE - WP By

Files Preprocessing Text chunks

|
S - W @

Vector embeddings Encoder model

Fig. 1: The process of text embedding: files are chunked, an
encoder model then generates the embedding vectors.

;N

Find similar
embeddings

Question Encoder model Vector embedding

|

= B [12]
B ey . @ — T3

Prompt template

l
5 O

Decoder model

Find similar
text chunks

top k similar
text chunks

top k similar
embeddings

Answer

Fig. 2: The processing of user prompts: the question is encoded
via the encoder model, the vector database is queries for
relevant embeddings which feed into the final prompt template
based on which the LLM generates the answer.

input capacity, RAG uses natural language processing (NLP)
to identify the relevant context for a user’s question, converting
text from source files into vector embeddings—numerical
representations of text chunks that encode their meaning. The
distance between vectors indicates their similarity.

Before embedding conversion, a preprocessing phase ex-
tracts text from diagrams, tables and chunks the text into
smaller segments, minimizing information loss. The text is
then converted into vector embeddings using an encoder
model, which utilizes the encoder component of the trans-
former architecture [7] as shown in Figure 1.

The vector embeddings are stored in a vector database,
designed for fast similarity searches using a specific distance
metric. To answer a question, the user’s query is also converted
into a vector embedding using the same encoder model. The
database is filtered for a given number of relevant document
chunks most based on a similarity measure which are used as
context.

The retrieved context is combined with the user’s question in
a prompt template and provided to the LLM, which generates
the answer based on the given information as illustrated in
Figure 2.

B. Large Language Models

LLMs are based on the transformer architecture [7]. The
encoder generates vector embeddings from the source text,
which the decoder uses to produce the output. Decoder-only
models, commonly used in chatbots, focus on generating
responses based on user input.

In this project, LLMs are orchestrated using the Ollama'
tool, which simplifies downloading and running pretrained
models in isolation. It also provides an API for programmatic
execution using various libraries.

C. Encoder models

In the implementation of the RAG method, the
all-MiniLM-L6-v2> model was used as the encoder.
This model has 22.7 million parameters and is a fine-tuned
version of MiniLM-L6-v2 [8], designed to encode English
text chunks while preserving their semantic meaning.

The encoder model generates compact 384-dimensional
vector embeddings during text conversion. These embeddings
enable efficient information retrieval in the RAG system by
allowing similarity-based searches among the stored vectors.

D. Decoder models

One of the challenges of the application’s development was
identifying a suitable decoder model for generating responses.
Achieving the current level of response quality required testing
multiple models.

During the initial prototyping phase, the 137 million pa-
rameter GPT-2 [9] model—trained by OpenAl—was used
to ensure local runnability. Later, with access to more ca-
pable hardware, it became possible to experiment with the
380 million, 812 million, and 1.61 billion parameter versions.
However, none of these models delivered the expected answer
quality: the generated text often appeared as if it were quoted
from external sources, rather than providing direct answers to
the questions.

The Llama 2 [10] model provided answers with the expected
quality, but its behavior was not as controllable. This posed
a challenge, particularly during context-based title generation
for conversations. The length of the generated text was difficult
to regulate, and at times, overly creative titles were produced
that were unrelated to the corresponding conversation.

Based on previous experience, the 7.3 billion parameter
Mistral [11] model developed by Mistral Al was chosen,
specifically the instruction-following fine-tuned version. This
model was designed to complement the Llama 2 model by en-
hancing its performance. As a result, the instruction-following
version of the Mistral model outperforms the 13 billion
parameter version of Llama 2 across various benchmarks.

In the current phase of the project, the 7.3 billion parameter
Mistral, fine-tuned for instruction following, model is in use.

Thttps://ollama.com/
Zhttps://huggingface.co/sentence- transformers/all-MiniLM-L6-v2

E. Vector database

A key component of the RAG method, alongside the
question-answering LLM, is an optimized vector database that
stores contextual vector embeddings of relevant text chunks.

Initially, the Chroma® vector database was used for per-
sistent storage but lacked support for concurrent requests,
affecting performance. To address this, Milvus* was adopted,
offering concurrent request handling, scalability, and flexibility
with various data and index types.

Milvus supports multiple metrics for vector comparison,
with cosine similarity being used in this project, defined as

, (x,y)
Slm(x) y) = 9
[- Iy
where || —|| : R? — R denotes the Euclidean norm on vectors,

and (—, —) : R x R? — R denotes the dot product.

Each uploaded file is stored as a separate collection in
Milvus, with vector embeddings and associated metadata like
source file ID and chunk position (page numbers). Cosine
similarity is used to find the most similar text chunks, and
to speed up this process, the IVF_FLAT® index is employed,
balancing search performance and memory usage. This index
organizes vectors into clusters by centroids, with the number
of centroids defined by the nlist parameter. The query
searches for the nearest centroids, then selects the k most
similar vectors.

In the implementation, k=5,
nprobe=10 parameter values are used.

nlist=128, and

F. Optical Character Recognition

The RAG approach is extended to include images as context
in addition to documents.

This process is done using Optical Character Recognition
(OCR), which extracts the text from the uploaded images.

For optical character recognition, the project utilized
the pretrained, lightweight EasyOCR® model developed by
JaidedAl. The model, based on convolutional neural networks,
is available as a Python package for easy integration into
software systems.

IV. PRACTICAL IMPLEMENTATION OF THE RAG METHOD

The following section presents the custom implementation
of the RAG method, based on the previously discussed com-
ponents and technologies. The overall architecture is depicted
in Figure 5.

A. Architecture

The RAG system is built on a multi-endpoint microservice
architecture alongside a Milvus vector database server. Its core
functionality is implemented through server-side components,
which communicate with the underlying subsystems. These
server-side components will be described in detail in the
following subsections of this section.

3https://www.trychroma.com/
“https://milvus.io/
Shttps://milvus.io/docs/ivf-flat.md
Shttps://github.com/Jaided AI/EasyOCR

Backend

| ResTAPI

RESTAPI

RESTAPF | OCR

Milvus SDK

Fig. 3: The backend system interacts with the RAG compo-
nents via REST API.

% &

Text chunks

G B

Download file Text file

l | l

q B

Ddﬂ .
S 9

OCR model

Encoder model

Store in database Vector embeddings

Fig. 4: The process of encoding the user input. Images are fed
to an OCR model extracting the textual context. The texts are
embedded via the aforementioned embedding process.

The main services include question answering, searchable
file storage and context retrieval based on user questions, and
text extraction from the uploaded images.

The RAG microservice architecture consists of the follow-
ing components:

e Query endpoint: Generates answers to user questions by
leveraging the decoder model, orchestrated through the
Ollama tool.

o Embeddings endpoint: Generates vector embeddings us-
ing the encoder model, orchestrated via the Ollama tool.

e OCR endpoint: Extracts text from uploaded images using
the previously mentioned OCR model.

The Milvus vector database provides persistent storage for
vector embeddings and supports efficient similarity search.
This component communicates with the backend server
through a Python package built on top of the Milvus SDK.

The microservice endpoints are hosted on a Hypercorn
asynchronous HTTP server and implemented using the
FastAPI® framework. The backend server-side components
involved in the RAG process interact with these endpoints via
an HTTP-based RESTful API as depicted in Figure 3.

7

B. File processing

The application supports various file types (TXT, DOCX,
PDF, PNG, JPG, JPEG), collectively referred to as files with
these extensions. The goal of file processing is to extract
content from uploaded files and convert it into a searchable
format for storage, addressing the LLM’s limited input size.

"https://pypi.org/project/Hypercorn/
8https://fastapi.tiangolo.com/

The file processing workflow involves pre-processing and
storing the extracted text in a vector database for efficient
searchability. Upon file upload, the backend server processes
the files in the background, extracting text from plain text files
directly or using an OCR model for image files as illustrated
in Figure 4.

Large files are processed iteratively, loading small text
chunks (e.g., pages for PDFs, paragraphs for DOCX, lines for
TXT) to optimize memory usage. Text chunks are standardized
in length with a fixed-size overlap to reduce content loss.

Due to the lack of suitable external libraries for file scanning
and text segmentation, custom file iterators were necessary to
implement. These iterators use a sliding window algorithm to
scan files and generate text fragments in linear time. The image
iterator sends content to the OCR endpoint via a REST API,
with the extracted text processed similarly to other file types.
File iterators also track page numbers, which are defined for
PDFs, undefined for DOCX due to rendering, and treated as
a single page for TXT and images.

Preprocessing is managed by the VectorDbService,
which communicates with the vector database via
VectorDbRepository. Asynchronous communication
improves processing speed, with the system’s architecture
illustrated in Figure 3.

C. Title and answer generation in conversations

The RAG system generates textual responses and conver-
sation titles to user queries. Text generation by the locally
deployed LLM is guided by prompts, offering a resource-
efficient balance between fine-tuning and inference. Prompt
templates set the context for the input, informing the LLM of
the desired output structure.

The prompt template for responses includes guidelines such
as maintaining a polite tone, staying within the provided
context, and adhering to conversation history. It is followed
by the relevant conversation history and the user’s question.

The title is generated based on the user’s initial message
and context, guided by a prompt template that includes task-
specific instructions and representative examples. The template
concludes with the user’s input, applying few-shot learn-
ing [12] to support the generation process.

Interactions with the LLM, managed by the Ollama orches-
tration tool, are facilitated by the LangChain® library, which
embeds input fragments into prompt templates and configures
LLM hyperparameters.

Key hyperparameters for text generation include temper-
ature and maximum number of tokens. LangChain limits
temperature to the interval [0,1] for stability. The utilized
values are 0.9 and 256 for title generation, and 0.9 and 20
for response generation.

Architecturally, the RAG microservice communicates with
the backend server (ChatbotService) via RESTful API
calls, as shown in Figure 3.

%https://python.langchain.com/docs/introduction/

D. Chat memory

A significant limitation of the RAG method implementation,
described in the preceding subsections, lies in its predom-
inantly question-answer-oriented approach, which overlooks
the preceding content of the conversation in which the user’s
question is embedded. As a result, this implementation may
lead to reduced coherence and continuity in multi-turn dia-
logues.

Various approaches exist to address the memory limitation
outlined above. Considering hardware constraints and the
need for efficient response times, the following solution has
been implemented in the project: the context derived from
the relevant files is incorporated into the prompt template
alongside a fixed number of preceding conversation messages,
the majority of which are denoted by m. This combined input is
then used by the large language model to generate a response
to the user’s question within the appropriate context. In the
specific implementation of the project, the parameter value is
set to m=6.

The implementation of chat memory is handled by the
ChatbotService on the server side.

V. ARCHITECTURE

The system architecture comprises several key components,
each fulfilling a distinct role in ensuring functionality, scal-
ability, and seamless user interaction. The main components
are as follows:

e RAG microservice: Facilitates question answering via a
large language model and processes user-provided con-
textual documents.

o Server: Central component responsible for handling client
requests and managing communication with the database
and RAG microservice.

e ’

Firebase Authentication Firebase

OAuth 2.0

/
il

Backend

RAG
Microservice

Fig. 5: Architectural overview of the platform. Client side in-
teracts with Firebase and the backend via REST. The backend
side orchestrates the user management, document storage and
LLM queries.

o Web and mobile clients: Provide a unified interface (web,
Android, i0S) for user interaction and manage integration
with Firebase Authentication and Storage.

o Firebase: Handles cloud-based file storage (Firebase Stor-
age) and user authentication via Google accounts (Fire-
base Authentication).

o Databases: User data is stored in a Microsoft SQL Server
database, while fast context retrieval for the RAG pipeline
is supported by a Milvus vector database.

A. Server

The backend server is structured according to a three-tier
architecture, which promotes modular development by clearly
separating software component responsibilities.

Client applications interact with the backend through a
RESTful HTTP API, representing the presentation layer.
Based on the Model-View-Controller (MVC) design pattern,
incoming requests are routed to controllers defined by the
FastAPI framework.

Data Transfer Object (DTO) patterns are used to validate
incoming data and filter out irrelevant information from re-
sponses.

The presentation layer responds to requests using service
interfaces defined in the service layer, which in turn pro-
vides the actual implementations. Most services interact only
with the data access layer, except for components such as
ChatbotService and VectorDbService, which are
integral to the RAG system.

The service layer accesses persistent data through interfaces
provided by the data access layer, which is responsible for data
storage and retrieval.

B. Client applications

The system includes two client interfaces: a web application
and a cross-platform mobile application. Both allow users to
interact with a chatbot interface powered by a large language
model, enabling efficient extraction of information from up-
loaded documents and images.

The web application is built using the
Model-View—ViewModel (MVVM) architectural pattern,
ensuring a clear separation of concerns between the interface,
logic, and data layers. Developed with React and TypeScript,
the web client offers a rich feature set, including user
authentication (via email/password or Google), conversation
management, message rating and copying, and advanced
file handling. Users can attach files to new or existing
conversations, filter documents, and organize them in folders
using a global file management system. Additional features
include drag-and-drop file movement, folder navigation,
and document search. Firebase Authentication and Storage
services are integrated for user login and persistent file
storage.

The mobile application, built with React Native and Expo,
follows a modular three-layer architecture: visual, logic, and
communication layers. Navigation is implemented through
Expo Router’s file-based routing system. The app supports

[3J 28 Exciting Sandwich Ideas to Switc... ®

Hey! I'm getting a bit bored of plain old
peanut butter and jelly sandwiches. Do

you have any suggestions for something
better?

e Hello! In the provided context, the USU dietetic
students shared 28 sandwich ideas to spice up
your lunch. Here are some suggestions from the
list:

= 1. Try a sandwich made with bread, deli meat

(such as ham or turkey), and mayonnaise.

2. Use hummus instead of mayo for a healthier

option.

3. Consider using pesto or fancy mustard as a

spread.

4. You could also experiment with flatbreads like

tortilla or naan bread, and fill them with grilled

Q= chicken, cooked egg, veggies (like lettuce and
— spinach), and cheese.

5. Veggie burgers, tuna, or egg salad are other

interesting choices for sandwich fillings.

6. Don't forget about using roasted turkey or

mashed beans as a filling.

7. If you prefer plant-based options, tofu could be

a good alternative.

@@ [/ Text >
[— |

Fig. 6: Using an image from a cookbook as context for new
generating new recipe ideas.

user registration, conversation handling, file attachment, and
a unique mobile-only feature: capturing and uploading images
via the device’s camera. It uses Context API and AsyncStorage
for managing global state (e.g., active user, current conversa-
tion), and communicates with the same backend via REST
APIs.

While the mobile version offers slightly reduced func-
tionality compared to the web client—such as the lack of
folder management or source reference display—it introduces
mobile-specific enhancements and ensures a consistent user
experience across platforms. Both clients rely on a shared
backend, unified authentication, and centralized file handling,
forming a cohesive, document-centric conversational system.

VI. DISCUSSIONS

Using a cookbook!® as context, the chatbot engages in a
conversation where the user requests an alternative sandwich
idea. Based on the provided ingredients, the chatbot generates
a detailed recipe. The conversation and the referenced text
excerpt are shown in Figures 6,7, 8 and 9, highlighting that
the response draws directly from pages 28-29 of the source.

This interaction exemplifies the functionality of the im-
plemented Retrieval Augmented Generation (RAG) system.
The architecture consists of web and mobile clients that
communicate with a backend server through a RESTful APIL
On the server side, input files are processed into text chunks,
which are embedded using the all-MiniLM-L6-v2 encoder

10https://www.usu.edu/aggiewellness/files/USU- Student- Cookbook- FINAL- 1.
pdf

Sandwich Ideas

Sandwiches are a great lunch staple and are very simple and easy to make. Getting bored of
plain old peanut butter and jelly? Here are some ideas from USU dietetic students to try to spice
up your everyday sandwiches.

Breads
Bread

Tortilla

Pita bread

Naan bread (or other flat bread)
Roll

Bun

French bread or other artisan breads
English muffins

Ciabatta

Spread:
Fancy mustard

Hummus

Pesto

Cream cheese (plain or herbed)
Mayonnaise (plain or flavored)
Ranch or other salad dressings
salsa

Guacamole

Mashed beans

Protein:
Deli meat

Grilled chicken

Cooked egg

Sausage

Roasted turkey or other meat
Tuna

Cheese

Beans

Tofu

Veggie Burgers

Egg salad (or chicken salad)
Lentils

Vegetables:
Lettuce
Spinach

Fig. 7: One of the contextual excerpts used in the conversation
from the provided document (page 28).

Healthy and Creative Sandwich Ideas for Nut Butte... c

in 3 spicing up your
suggested Some of 3
herbed Alavored), and ranch
or other 1d a d
torila,pita bread, naan bread, oll, bun, French bread, or artisan breads. The key is to include

bread suchas

aprotinand aprocuce component inyour sandich forenergy. For exampie, ou coud use
nutbuter vith sced
[- Jeoees

axo

with vegetables, fruitor

vich with the ingredients provided,

in the context. Here's one idea:

* Bread: Pta bread (flatbread works too)

* Spread: Hummus

* Protein: Grilled chicken

*Veggie: Spinach, chopped carrots, sliced tomatoes.
* Extras: Mashed beans, lettuce, pckdes (i desired)

of Add your
griled chicken, then arrange the spinach, chopped carrots, and sliced tomatoes on top. If
youd ke, add mashed be Finally, ol added

~

® >

Fig. 8: Conversation based on the provided source document,
in which the user asks the chatbot for sandwich-making
advice.

model. The resulting vectors are stored in a Milvus vector
database, enabling efficient context retrieval based on cosine
similarity. When a user submits a query, the system retrieves
relevant context and generates a grounded response using the
Mistral-7B decoder model.

Healthy and Creative Sandwich Ideas for Nut Butte... a8 ¢

awe

Source USU-Student Cookbaok

vorks to0)

rots,sliced tomatoes
e, pickles (ifdesired)

v
FINAL1pat

Pages: 4.9

Source: USL-Stdent. Cookbaok-
ol 2hby spreading a layer of hummus on the pita bread. Add your
e spinach, chopped carrots, and sliced tomatoes on top. If
and some lettuce leaves. Finally include pickles for an added

or the ideal Can't waltto try it

Thanky ¢ could help.
s

1. Plan your dvance, you need P
2 getables o

time.

3 for time,
4.Trybatch cooking meals so you have leftovers for later n the week.

Fig. 9: Illustration demonstrating source usage in the conver-
sation, showing pages 28-29 of the referenced cookbook.

VII. CONCLUSION

The proposed platform provides a blueprint that enables the
creation and management of conversations, messages evalu-
ation, and uploading and deleting files in addition to taking
pictures for context expansion. As a result, a versatile, cross-
platform application has been developed, which can meet
various user needs.

Although the main objectives of the project were met,
some functionalities could not be implemented due to time
constraints. For the mobile application, this includes the ability
to create folders and authentication via external providers (e.g.,
Google-based authentication).

In conclusion, the proposed chatbot project has been suc-
cessfully implemented as a stable, well-structured system,
providing a solid foundation for further extensions and prac-
tical use in real-world environments. The system’s ability to
provide context-aware question answering from user-provided
documents and images, powered by the Retrieval-Augmented
Generation (RAG) architecture, represents a significant step
in advancing intelligent chatbot systems. The key compo-
nents, including the all-MiniLM-L6-v2 encoder for vector
embedding, Milvus for retrieval, and the Mistral-7B decoder
for response generation, have proven effective in generating
accurate, traceable, and grounded answers. There are multiple
directions for future development. These include the introduc-
tion of conversation archiving and sharing with other users,
as well as utilizing a more advanced response mechanism for
message evaluation, which could enhance system functional-
ity and improve user experience. Additionally, improvements
aimed at increasing the reliability of the backend system, such
as implementing transaction management for file operations or
optimizing system scalability, would be beneficial. In the web
application, the file preview feature was omitted, which can
also be added in the future. Future work will also focus on
enhancing conversation continuity and optimizing the system’s
scalability and responsiveness.

(1]

(2]

(3]

(4]
(5]
(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

C. Wu, W. Ding, Q. Jin, J. Jiang, R. Jiang, Q. Xiao, et
al., “Retrieval augmented generation-driven information
retrieval and question answering in construction man-
agement,” Advanced Engineering Informatics, vol. 65,
p- 103158, 2025, 1SSN: 1474-0346. DOI: https://doi.
org/10.1016/j.aei.2025.103158. [Online]. Available:
https : // www . sciencedirect . com/ science / article / pii /
S1474034625000515.

K. Adnan and R. Akbar, “An analytical study of in-
formation extraction from unstructured and multidimen-
sional big data,” Journal of Big Data, vol. 6, no. 1, p. 91,
Oct. 2019, 1SSN: 2196-1115. DOI: 10.1186/s40537-019-
0254-8. [Online]. Available: https://doi.org/10.1186/
s40537-019-0254-8.

S. V. Mahadevkar, S. Patil, K. Kotecha, L. W. Soong,
and T. Choudhury, “Exploring ai-driven approaches for
unstructured document analysis and future horizons,”
Journal of Big Data, vol. 11, no. 1, p. 92, Jul. 2024,
ISSN: 2196-1115. poI: 10.1186/s40537-024-00948-z.
[Online]. Available: https://doi.org/10.1186/s40537 -
024-00948-z.

OpenAl. [Online]. Available: https://help.openai.com/
en/articles/10169521-projects-in-chatgpt.

Anthropic. [Online]. Available: https://www.anthropic.
com/news/projects.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, et al., “Retrieval-augmented generation for
knowledge-intensive nlp tasks,” in Advances in Neu-
ral Information Processing Systems, H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
vol. 33, Curran Associates, Inc., 2020, pp. 9459-9474.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. N. Gomez, et al., “Attention is all you need,”
in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, et al., Eds., vol. 30, Curran
Associates, Inc., 2017.

W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M.
Zhou, Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers, 2020.
arXiv: 2002.10957 [cs.CL].

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I.
Sutskever, et al., “Language models are unsupervised
multitask learners,” OpenAl blog, vol. 1, no. 8, p. 9,
2019.

H. Touvron, L. Martin, K. Stone, P. Albert, A.
Almabhairi, Y. Babaei, ef al., “Llama 2: Open foun-
dation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford,
D. S. Chaplot, D. de las Casas, et al., Mistral 7b, 2023.
arXiv: 2310.06825 [cs.CL].

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, et al., “Language models are few-shot

learners,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.
Balcan, and H. Lin, Eds., vol. 33, Curran Associates,
Inc., 2020, pp. 1877-1901.

