
VoteHub: Highly Customizable and Secured Voting
System for Institutions Providing AI-Based

Transcript Generation
Norbert Biró

Babes, -Bolyai University
Cluj-Napoca, Romania

bironorbi0356@gmail.com

Gergő Kelemen
Babes, -Bolyai University
Cluj-Napoca, Romania

zskelemen73@gmail.com

Dénes Bálint Kelemen-Fehér
Codespring

Cluj-Napoca, Romania
kelemen.balint@codespring.ro

Katalin Rácz-Nagy
Codespring

Cluj-Napoca, Romania
nagy.katalin@codespring.ro

Károly Simon
Babes, -Bolyai University
Cluj-Napoca, Romania

karoly.simon@ubbcluj.ro

Abstract—Institutions often face challenges in managing the
voting process efficiently and securely during internal meetings.
In large groups, voting by show of hands is slow and prone
to errors, while many digital solutions lack flexibility, real-time
feedback, and secure, organized result storage.

This paper presents a system which aims to provide a reliable
platform for institutions to organize meetings and manage the
voting process on different topics during these meetings. Institu-
tions are organized into closed forums. The system distinguishes
between two roles: moderators manage the list of members,
forums, meetings, and topics; forum members can participate
and vote in meetings. The system also provides the ability to
automatically create transcripts from the audio recording of a
meeting.

Index Terms—Voting System, Software Architecture, Secure
Forums, AI-Based Transcript Generation

I. INTRODUCTION

The VoteHub application provides a platform that makes it
easy, convenient and secure to organize institutional meetings
where participants vote on various topics. Each institution
has its own solution regarding the voting processes applied
at its meetings. One obvious solution is to vote by show of
hands, but this process is time-consuming in larger groups, as
it involves counting the votes individually, then calculating the
final result and it also can be prone to errors. Some software
solutions and tools are also frequently used, such as Google
Forms or Microsoft Forms. In these applications, polls and
voting forms can be created and shared among members of the
institution. However, in a longer meeting, this approach is not
optimal either, as there is no live feedback and no way to track
the current state of the vote. There are also some specialized
systems, some of them including hardware elements, but these
solutions are too rigid and not customizable enough for a wider
acceptance by institutions.

VoteHub provides a more flexible solution that simplifies
the organization of meetings and the management of voting
processes, while at the same time makes the process fully
customizable. Institutional meetings are organized into closed
forums, where access is by invitation only, ensuring that
only authorized users have access to sensitive information. In
addition, the application supports online and hybrid meetings,
where the status of a meeting can be followed in real time

and users can actively participate in the voting process. It is
also possible to automatically generate reports and transcripts
based on the meetings.

The paper describes the different aspects of the application,
such as the architecture of the system, the functionalities, the
tools and technologies used. First, a general overview of the
system architecture and its functionality is presented. Then,
the technological solutions by which the system achieves these
functionalities is discussed in detail. The paper will be con-
cluded by listing some possibilities for further development.

II. FUNCTIONALITIES

Fig. 1: Use cases of VoteHub application.

The system distinguishes between two user roles: member
and moderator. Figure 1. shows the use-cases of the appli-
cation. The two different roles are introduced because of
the different privileges. Users can receive privileges through
invitations, a person can receive forum invitations for both
roles. Users can choose to accept or decline the invitation.
Any registered user can create a forum, in which case they
automatically have moderator rights within the created forum.

Main functions of moderators:
• Create meetings and topics. The central element of the

application is the forum, and the management of meetings
and topics within the forum is one of the main tasks of
moderators.



• Send invitations to other users. Invitations are sent by
email. The invited person does not need to be registered in
advance. When inviting a user, their role must be defined.

• Edit information of forum and its meetings and topics.
This includes editing entity names, descriptions, sched-
uled dates.

• Create voting systems. The voting system defines the
voting process that is used to determine the outcome of
the vote.

• Suspend or revoke the privileges of other users in the fo-
rum. A moderator can temporarily suspend or completely
exclude members and even other moderators from the
forum. They can also revoke the voting rights of members
on a given topic (in this case, there is no exclusion from
the forum).

• Conduct meetings. Only one moderator can start a meet-
ing. Once the meeting has started, the moderator can set
a topic to be voted on. The moderator can see the number
of members who have joined and the number of votes.
The moderator is responsible for starting and closing
the votes. Once a vote is closed, the result is displayed,
showing which members voted for which option.

• Generate transcript from audio recording. Based on the
audio recorded during the meeting, moderators can gen-
erate a transcript that can be edited later by them and
shared with other users.

Main functions of members:
• View forums, meetings, topics.
• Participate in meetings.
• Have voting rights. Their votes determine the outcome of

the topic.
• They can access the meeting transcript, which is available

for download and sharing.

III. VOTING SYSTEM AND RESULT CALCULATION

To determine the results of a ballot, the following criteria
are taken into account:

1) Quorum, which is the percentage of members that must
be present to constitute a valid vote.

2) The percentage of votes required for a voting option to
be the winning option. The system allows moderators
to specify whether the percentage of votes cast for
an option should be calculated from the number of
participants present or from the total number of members
in the forum.

3) Whether abstention is accepted as a valid voting option.
The moderator can create voting systems from templates,

modifying the values of the templates, or define a completely
new system. For voting systems created from templates, by
default abstention is not a valid option and the percentage
of votes for options will be calculated from the number of
members present. Once topics are created within a meeting,
the moderator can assign voting systems to these topics, and
the outcome of each topic will be calculated according to the
criteria of the assigned voting system.

The calculation of the results starts with determining
whether results are calculated from the number of forum
members, or from the number of participants present. This
number will be denoted by T0. Then, the number of votes
cast (ai) will be calculated for each option. From this we
obtain the percentage of votes on an option by pi = ai/T0.
Then, if participants have the ability to abstain according to
the voting system, the number of abstentions A is subtracted
from the number of votes cast, i.e. T1 = T0 − A. Next,
we check the previously mentioned criteria. A vote is not
considered successful if there are fewer members present than
the minimum number of votes specified in the 1. criterion,
if T1 = 0, or if there are two options which have the same
number of votes. In all other cases, the winning option is the
one for which pi is greater than the value specified in the
2. criterion. If the abstain option happens to be the winning
option, then the ballot is again not considered successful.

The system provides templates for the more common types
of voting, which are:

• Simple majority - 50%+1 vote for an option to win (pi =
0.5)

• Two-thirds majority - 2/3 of members must vote for an
option to win (pi = 0.(66))

• Full consensus - all members must vote for the same
option (pi = 1)

IV. GENERAL ARCHITECTURE

Figure 2(a). shows the architecture of the VoteHub system,
which consists of three main services: a web and a mobile
application, served by a central server.

• Server - The server provides a RESTful API and is
written in Kotlin using the Spring framework.

• Database - The database of the system is a MySQL
database. Database migration is done using Liquibase.

• Artificial Intelligence-based Transcription Service - The
system uses Speaches AI, based on the OpenAI Whisper
general-purpose speech recognition model, to transcribe
audio material recorded during meetings.

• File-based storage system - The MinIO service is respon-
sible for the storage of files. All audio files that arrive for
transcription are stored here and are available to users.

• Web client - The web client provides an interface for
moderators to perform administrative tasks. The applica-
tion is written in React using Typescript, state manage-
ment is implemented using Redux, and the UI elements
come from the MaterialUI design library.

• Mobile client - The mobile client allows members to vote.
The application is written in React-Native, the code is
compiled and packaged using Expo, and the UI elements
are built using the React-Native Paper library.

• Keycloak - The identity provider used for user authenti-
cation is Keycloak. The Keycloak server allows users to
verify their identity based on JWT tokens [1].



(a) Architecture of VoteHub. (b) The three-layered archi-
tecture of the server.

Fig. 2: General and Server Architecture

V. SERVER

The core of the VoteHub system is the server, which stores
data, performs the necessary operations to implement the
business logic, serves the web and the mobile clients, and
handles audio recordings, transcriptions.

A. REST API

Client-server communication is done via a RESTful API in
JSON and Multipart format. This is used for data retrieval, data
modification and other functionalities. A DTO (Data Transfer
Object) design pattern is applied, which allows communication
to be independent of the database schema and the system
models [2].

B. Websocket communication

During the use of the web and mobile applications, clients
may want to receive real-time notifications about changes in
system data, which cannot be achieved through the REST
API. To enable two-way communication for transmitting and
receiving real-time data changes, the Server communicates
with clients via WebSocket [3].

When members join a meeting, they are automatically
subscribed to the channel associated with the meeting, where
they receive information about the meeting’s status. A meeting
can have multiple states set by the moderator. The mobile
client reacts in real-time to these changes, displaying them
to the members with every state change, which may include
starting the meeting, switching topic, stopping the vote, or
ending the meeting. The Server sends notifications to the

connected clients about these changes. Additionally, when
members join, leave, or cast a vote, the Server broadcasts this
information on another channel to the moderators. In this way,
the number of attendees and the number of votes cast can be
tracked accurately and in real-time.

The processing of recorded audio files can also have mul-
tiple states. After uploading an audio file, moderators receive
updates via WebSocket about the current processing stage.

C. Architecture

The server architecture, shown in 2(b), consists of three
layers: Presentation Layer, Business Logic Layer, and Data
Access Layer. Organizing functionalities into layers elimi-
nates unnecessary dependencies between components, ensur-
ing modularity [4]. The implementation of one layer can be
replaced without modifying the other layers. Each layer has a
well-defined set of responsibilities. Communication between
the layers always follows the path from the Presentation
Layer through the Business Logic Layer to the Data Access
Layer. The services provided by a layer are defined in Kotlin
interfaces.

The Presentation Layer provides the opportunity for the
web and mobile clients to make requests to the server. The
VoteHub server provides a RESTful API, allowing clients to
communicate using HTTP requests. This API is implemented
by classes annotated with the @RestController annotation,
which specifies that the given class is capable of handling
HTTP requests.



The Business Logic Layer defines the entire functionality
of the server. After receiving a request, the RestControllers
forward it to the appropriate Service class. Classes that imple-
ment Service interfaces are annotated with @Service.

The classes located in the Data Access Layer establish
a connection with the MySQL database. The interfaces in-
heriting from the JpaRepository interface are annotated with
@Repository.

D. Transcript Generation and meeting minutes editing

Moderators can generate transcripts from the audio record-
ings of meetings. The tool used for this feature is Speaches AI,
which utilizes OpenAI Whisper-based artificial intelligence
models.

The transcripts are stored in the database in a dedicated
table, which contains the transcript text, the processing status,
and a foreign key reference to the corresponding meeting.

After the meeting ended, moderators can upload an audio
file with a .mp3 or .wav extension. The language of the audio
file must also be specified to ensure more accurate processing.
The list of supported languages by the chosen model is
available via the REST API. The related service stores the
audio files to be processed in a queue. Moderators can edit the
generated transcript, which will then be marked accordingly.
It is also possible to delete the generated transcript, even if an
error has occurred.

A transcript can be created not only by uploading an audio
file but also by manually entering the text.

E. Storing Audio Recordings

As mentioned in V-D paragraph, moderators can upload
audio recordings to generate transcripts. To ensure future
access, these recordings are stored using MinIO, an open-
source object storage system compatible with the Amazon
S3 API. Communication between the Server and MinIO is
handled by the MinioClient class from the io.minio:minio
library, enabling basic operations like saving, deleting, and
retrieving files, as well as managing buckets.

The system also stores audio metadata (filename and lan-
guage) in the MySQL database.

A dedicated service manages MinIO interactions. Modera-
tors upload files as multipart/form-data, which will be saved in
a bucket named forum-forum id. Each meeting has a subfolder
named meeting/meeting id/audio, where audio files are saved
with a randomly generated name and the original extension.
This structure supports multiple recordings per meeting.

When a transcript is deleted, both the database entry and
the corresponding file in MinIO are removed.

VI. WEB AND MOBILE APPLICATION

A. Authentication

When the application is first opened, the user sees an
introductory screen, where by clicking the Login button, the
application redirects them to a page, where they can login or
register. When registering, the user must verify their email
address. These processes are performed by the Keycloak

server. If the login is successful, the Keycloak server generates
an access token and a refresh token, and then redirects the user
back to the application. These tokens are then saved on the
users device (or the browsers local storage, in the case of the
web application), and until these tokens are valid, the user
does not have to sign in again.

The communication with the Keycloak server happens ac-
cording to the OIDC protocol, and thus the generated tokens
are used based on the OIDC specifications [5]. If the user
wants to access a protected resource, the application auto-
matically appends the access token as a bearer token to the
request header sent to the server. The server then checks this
and sends the appropriate resource only if the token is valid.
Access tokens have an expiration time which is rather short,
and in order to avoid the user having to log in again, a refresh
token is used to obtain a new access token. If the user is trying
to access a protected resource, and no access token is present
in the request header, the server responds with a 401 status
code. If the user is logged in, but does not have permission to
view the resource, then the server responds with a 403 status
code.

B. Meeting management in the web application

The primary purpose of the web application is to provide
an administrative interface for moderators. In this section the
process of how moderators can manage a meeting will be
presented.

A separate page is available to moderators in order to control
meetings. A single moderator has to conduct a meeting, from
its start to its end. Before the meeting is started, the moderator
can only see a text on this page, which informs him that the
meeting has not yet been started. A start button is also visible
below the text, which can be used to start the meeting.

By clicking the start button, the meeting starts and the meet-
ing control interface appears, which consists of the following
three parts:

• On the left side of the screen is a list that shows the
topics of the meeting and below that the topic which is
currently under discussion, if any.

• At the bottom of the screen is the control panel itself,
where by clicking on various buttons, the moderator can
start or stop voting, or view the results of a vote.

• On the right side of the screen, various information about
the meeting is displayed based on the action selected
by the moderator on the control panel. For example, the
results of the votes can be displayed here.

During the meeting, the web application also maintains a
WebSocket-based connection with the server following the
STOMP protocol [6]. In this way, the moderator can track
how many people are currently present in the meeting from
the entire membership. After starting the vote, it also becomes
visible to him how many people have cast their votes up to that
moment. Based on this real-time information, the moderator
can start or close votes. The application also indicates with
an appropriate error message if the WebSocket connection
between the client and the server is broken. In this case,



(a) Meeting page (b) Voting on mobile

Fig. 3: Web and Mobile User Interface

the client tries to reconnect every second and if successful,
notifies the user that the connection has been successfully
reestablished.

The application provides two different views for displaying
the voting results. The user can list each participant’s vote
individually, or they can view the aggregate results in a pie
chart.

C. Voting on Mobile

The primary purpose of the mobile application is to provide
a platform for conducting votes. This section aims to present
the main functionalities, architecture, and technologies used
during the development of the mobile application.

Voting on a topic is the only functionality of the mobile
application that is exclusively available to members. If a
moderator attempts to log in, the system responds with an
appropriate error message.

After a member joins a meeting, the mobile application
retrieves the current meeting state from the server via the
REST API and connects to the dedicated WebSocket channel
to receive real-time updates, following the protocol described
in V-B paragraph.

A meeting can have four states:
1) Scheduled Meeting - The moderator has not started the

meeting yet.
2) Started Meeting without a topic - The meeting has

started, but no topic is set for voting.
3) Started Meeting with a topic - The meeting has started

with a topic available for voting.
4) Completed Meeting - The meeting has ended.
The mobile application indicates these states by displaying

the corresponding message to users. Figure 3(b) shows a
voting scenario for a topic.

The voting card displayed contains the topic’s title, descrip-
tion, a list of options, and a submit button to confirm the vote.
By default, no option is selected and the submit button is
disabled. Users can select only one option from the list. Once
a choice is made, the submit button becomes active, allowing
the user to cast their vote. Upon pressing the submit button,
the mobile client sends the vote to the server via the REST
API and notifies the moderator through WebSocket that the
user has voted. After submission, the button becomes inactive
again, and a confirmation message appears below the voting
card. A user can vote only once per topic.

VII. DEPLOYMENT

The VoteHub application uses Docker containerization for
both the server and web applications [7]. This approach allows
developers to configure the runtime environment, relieving
the host administrator from needing to know the system
dependencies. As part of the deployment process in the GitLab
CI/CD [8], the resulting Docker image is accessible from the
GitLab Container Registry. A Docker image is a standardized
package of the application that contains all the necessary files,
binaries, and configurations to run the project. To build a
Docker image, the project must include a Dockerfile, which
contains the commands required to create the image.

Docker Compose is used to manage the created images
efficiently. It simplifies managing services within the ap-
plication, streamlines communication, and facilitates setting
up network and data access connections. Configuration is
done via a YAML file, which defines the services within
the project. Docker Compose enables creating, starting, and
stopping services.

The configuration responsible for deployment resides in a
separate Git repository. This deploy repository handles set-



ting environment variables, accessing the server, and creating
containers from the Server and Web application images. The
Docker Compose YAML file manages five services:

1) Server
2) Web Application
3) MySQL Database
4) Speaches AI for transcript generation
5) MinIO file-based storage system
The deploy repository’s pipeline provides three manually

executable jobs: creating and running services, viewing log
history, stopping and removing services.

VIII. CONCLUSION AND FUTURE WORK

VoteHub is a highly customizable system that allows institu-
tions to conduct their voting processes securely and efficiently.

The application can be extended with a number of other
functionalities in order to be widely used. The following
development options are planned:

• Identifying speakers during the automated transcript gen-
eration.

• Possibility for moderators to attach documents to the
meeting topics, which will be available to the members.

• Possibility for creating subgroups within a forum for pro-
fessional committees, and requesting/receiving prelimi-
nary opinion for specific topics from these committees

• Creating open meetings that can be followed by people
outside the forum. In such meetings only forum members
can vote, but outsiders can also follow the voting process.
This could be useful for journalists, for example, to access
meetings they might want to write about.

• Notifications in the mobile app for forum members about
activities taking place within the forum.

• Introducing a chat interface within a forum.

REFERENCES

[1] Singh, Pankaj, and Vikas Gupta. ”JWT BASED AUTHENTICATION.”
[2] Monday, Paul B. ”Implementing the data transfer object pattern.” Web

Services Patterns: Java™ Platform Edition. Berkeley, CA: Apress, 2003.
279-295.

[3] Pimentel, Victoria, and Bradford G. Nickerson. ”Communicating and
displaying real-time data with websocket.” IEEE Internet Computing
16.4 (2012): 45-53.

[4] Renzel, Klaus, and Wolfgang Keller. ”Three layer architecture.” Software
Architectures and Design Patterns in Business Applications 10 (1997).

[5] Siriwardena, Prabath. ”Openid connect (OIDC).” Advanced API Secu-
rity: OAuth 2.0 and Beyond. Berkeley, CA: Apress, 2019. 129-155.

[6] Wang, Vanessa, Frank Salim, and Peter Moskovits. ”Using messaging
over Websocket with stomp.” The Definitive Guide to HTML5 Web-
Socket. Berkeley, CA: Apress, 2013. 85-108.

[7] Miell, Ian, and Aidan Sayers. Docker in practice. Simon and Schuster,
2019.

[8] Cowell, Christopher, Nicholas Lotz, and Chris Timberlake. Automating
DevOps with GitLab CI/CD Pipelines: Build efficient CI/CD pipelines
to verify, secure, and deploy your code using real-life examples. Packt
Publishing Ltd, 2023.


