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Abstract—Testing user interfaces is fundamental for ensuring
reliability and proper functionality. However, for many software
systems, there is no framework available that would support
automated testing, especially when the system requires manual
input controls such as physical buttons. Currently, testing of
these devices is largely done manually, which is extremely
time-consuming, requires a high degree of attention, and can
increase the potential for errors.

The project aims to create an automated testing system that
uses a robotic arm and object detection technology. The system is
capable of testing devices with physical buttons and mechanical
controls, ensuring precise and repeatable interactions, as well as
validating device feedback. This reduces the need for manual
intervention while significantly increasing the efficiency of the
testing process.

The solution consists of a web application and a backend
server. The web application provides the user interface that allows
for creating tests and viewing results, while the backend server
is responsible for executing the tests, controlling the robotic arm,
and performing object detection processes.

Index Terms—object detection, robotic arm, automation,
testing, AI

I. INTRODUCTION

In the domain of software development, integration testing
of a finished product is at least as important as the
separate verification of individual components. While the
latter ensures the correct operation of the building blocks,
the former guarantees their proper cooperation [1]. Testing,
however, becomes significantly more complex when the
software is not running on a general-purpose computer but is
instead designed for dedicated hardware [2]. In such cases,
standard testing infrastructure is often lacking, especially
for microcontroller-based devices [3]. Without such support,
it is difficult or even impossible to issue automatic test
instructions or to retrieve their results from the target hardware.
The challenge is further increased if the device is equipped
with physical input controls that require human interaction,
such as push buttons, touchscreens, or rotary switches.
Testing these using conventional tools can be particularly
cumbersome, especially once the product has completed its
final manufacturing phase [4], [5].

The current paper proposes a solution for automated testing
of such unconventional systems, relying on the following

tools: a robotic arm, a camera, and advanced object detection
software. The arm simulates human interaction by handling
physical inputs such as button presses, touchscreen navigation,
or turning rotary switches. The recognition unit assists in
controlling the robotic arm and enables result verification. Its
primary task is to identify the components of the device under
test through the camera feed.

Unlike conventional testing methods, the use of a robotic
arm is essential for devices equipped with physical input
interfaces that require human interaction. While various testing
frameworks exist–such as Appium1, which communicates
with Android devices using the Android Debug Bridge
(ADB)2 for Android devices or software specialized in UI/UX
testing-these solutions are typically limited to a specific
platform or input method. There is a lack of a universally
applicable system capable of handling devices with diverse
input interfaces, such as touchscreens, physical buttons, or
rotary switches.

With an accurate description of components of the test
device and deep learning-based recognition models, complete
multi-step tests can be executed without human intervention.
Introducing an automated system offers several advantages
over traditional manual testing. It eliminates human errors and
significantly frees up time for test engineers [4].

Currently, there are few solutions on the market capable of
software testing for devices requiring interaction by combining
robotic arm and object detection technology. Among the
best-known similar systems are MATT3, developed by Adapta
Robotics, and QUACO Pro4 from the portfolio of Sastra
Robotics. These solutions use proprietary devices that have
been specifically designed for this purpose.

II. INTERFACE ELEMENT RECOGNITION IN IMAGES

The current project aims to allow navigation on/interaction
with any user interface, including touchscreens, physical
buttons, knobs and other actuators. The current section focuses
on the technology choices enabling this.

1Source: https://appium.io/docs/en/latest/
2Source: https://developer.android.com/tools/adb
3Source: https://www.adaptarobotics.com/matt/
4Source: https://sastrarobotics.com/products/quaco-pro/
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Fig. 1. Buttons of the controller used for managing heating systems, with
labelled elements

Object detection algorithms are capable of recognizing
different shapes, icons, and even shorter text. They can detect
specific visual patterns and structures, which help identify
buttons, surfaces, and other elements [6]. The detection
employed in this project is based on deep learning, and enables
the identification and localization of various objects in images
or videos. The goal of their usage is to detect UI widgets on
screens, read label texts and identify interactive elements [7].

Among the various technologies, the YOLO (You Only
Look Once) algorithm family [8], [9] is chosen, as it is capable
of identifying multiple objects in a single image. This is
particularly important on a user interface, where real-time and
accurate detection plays a key role. YOLO is a single-stage
detector that has undergone numerous developments over the
years, continuously integrating the latest methods into its
architecture. The current project uses YOLOv8 as it was the
newest and most advanced version at the time of development.

YOLO recognizes objects and their positions with “a single
glance”, that is, with a single image processing, hence its
name. It uses a convolutional neural network (CNN) to predict
the bounding boxes of different objects in an image, as well
as their associated probabilities. CNNs are very effective at
processing visual data, as features can efficiently pass from
initial convolutional layers to later ones.

The first step in model training and object detection is
creating a well-structured and properly labelled dataset. In
order for the models to accurately and reliably recognize the
desired objects under all conditions, the dataset is created
in a varied environment. Images are captured under different
light conditions, continuously changing light sources, and the
device to be tested is photographed from multiple angles and
in different positions. Additionally, the camera position is
regularly modified so that the model would be able to handle
perspective differences (see Fig. 1).

After the training process, the result contains images
and files showing various statistics that help evaluate the
performance of the model and the best-performing model.

The project contains a dedicated recognition layer that is
responsible for identifying different objects based on given
parameters. In order for this layer not to be specific to
a particular test device, it has been designed so that no

Fig. 2. The robotic arm and testing mat recorded by a fixed camera

modifications to this layer are necessary when introducing
additional devices.

III. ROBOTIC ARM

The application utilizes the Magician Lite robotic arm
developed by Dobot Robotics (see Fig. 2) for controlling the
test device. This is a general-purpose device designed for
educational purposes, which can be controlled via hardware,
software, or Python programs [10].

The arm is capable of executing instructions with a
repeatability of 0.2 mm [10], providing more than adequate
precision for the use case of this project. Multiple types of
end effectors can be attached to the end of the arm, such as a
pen holder, a soft gripper, or a rotatable suction cup capable
of vacuum-based gripping of small objects (see Table I).

From a hardware perspective, out of the three available
end effectors, only two are actively used, as the gripper unit
does not prove useful in this application environment. The pen
holder unit, combined with a touch-sensitive stylus, is suitable
for controlling touchscreen devices such as a smartphone. The
suction cup unit can be effectively used to operate devices
equipped with push buttons or rotary knobs.

The design of the system enables the automatic testing
of devices with varying types, sizes, and input interfaces.
However, integration into the application requires the

TABLE I
DOBOT MAGICIAN LITE END EFFECTORS [10]

End Effectors
Pen holder Pen diameter: 8-12 mm
Suction cup Built-in air pump drive, operates under negative pressure,

with suction cup diameters of 10 mm and 20 mm
Soft gripper Built-in air pump drive, operates under both positive

and negative pressure, maximum opening and closing
distance: 50 mm



Fig. 3. Behaviour tree of the calibration process

following conditions to be met: (1) the surfaces of the device
intended for control or observation must be located within the
working area of the arm; (2) these components must be placed
on the upper side of the device; (3) the input interfaces must
be physically accessible and operable by the arm. Supported
components include touchscreens, LCD or other displays, push
buttons, rotary knobs, and other physical control elements.

A. Robotic arm and camera

The robotic arm comes with a special mat that determines
the position of the arm base and defines its workspace (see
Fig. 2). While these markings are not strictly necessary for the
operation of the robotic arm, the six reference points (A–F)
on the mat play a key role in the system. On one hand, they
visually designate the workspace defined by the application,
but their most important function is to support calibration.

To align the camera image with the other device coordinate
system, at least four points with known coordinates are
needed both in the camera image and within the workspace.
The reference points placed on the mat serve precisely this
purpose: with human assistance, the arm can read their spatial
coordinates, while they also appear as recognizable objects in
the camera image. This ensures that visual perception and arm
movement are precisely synchronized.

The camera is an essential component of the application,
as it enables the recognition of test device components and
plays a crucial role during the calibration of the robotic arm.
During a test run, whenever component detection is required,
the control unit retrieves the current frame from the camera
and runs the YOLO model on it. For calibration, the reference
points on the mat are also identified using a pre-trained
YOLOv8 model executed on the camera image.

The primary goal in programming the device is to enable the
simplest possible usage during test execution. For this purpose,
an abstraction layer covers the methods of the aforementioned
library.

B. Calibration

Precise calibration of the arm is essential for running
tests. Early tests demonstrate that the pixel coordinates of
components detected by object detection algorithms and

the arm’s own coordinate system are not compatible. This
is resolved by applying a projective transformation, which
enables the mapping between the two planes if at least 4
reference points are precisely known for both. The more
available points, the more accurate the fit [11]. The coordinates
of the six reference points on the special mat can be retrieved
from the camera image via the camera module, using the
previously trained YOLOv8 model. In the coordinate system
of the robotic arm, these must be registered manually, which
requires human intervention. To ensure easy development
and modularity, calibration is outlined and executed using a
behaviour tree (see Fig. 3).

Device Selection is an atomic element that waits for
the input of the user. Once the camera is selected, it
initiates camera initialization. In case of error, this information
propagates to the top level, and calibration becomes invalid.
This reaction is similar in all cases, except for components
capable of error handling.

Reference Point Detection is a selector-type component that
also executes its descendants from left to right but stops at the
first successful execution and passes the result up. According
to the figure, detection is first attempted with object detection,
and if unsuccessful, manual adjustment is required. If detection
is successful, no further intervention is needed.

During execution of the atomic Object Detection element,
the previously mentioned YOLOv8 model for reference point
detection is run. To reduce errors, the model is retried up to
five times in case of unsuccessful detection. If no satisfactory
result is achieved after this, the component signals an error.
The behaviour tree library allows information sharing via
a key-value storage system called the blackboard. Through
this, behaviour tree components can access the registered
coordinates of the reference points.

The atomic Manual Adjustment element serves as a fallback
to ensure that the arm can always be calibrated. The user must
adjust the camera so that the reference points projected onto
the camera image coincide with the real points. In other words,
the user must find a predefined camera angle and distance to
ensure valid coordinates.

After the Camera component completes successfully, the
Robotic Arm component is executed, which is also sequential.
Its first step is running the atomic Connection Check element,
which is considered successful if the program communicates
properly with the robotic arm. If the arm is not connected or
is used by another program, an error is signalled.

Reference Point Registration is an atomic element requiring
manual intervention, during which the real coordinates of the
reference points are recorded with the help of the user. This is
a simple process in which the end effector of the robotic arm
must be placed on all six points from A to F. The height
relative to the mat does not matter, as only the X and Y
coordinates are relevant. Once the end effector is positioned on
a reference point, the system queries and records the current
coordinates of the end effector. At the end of the process, the
scanned data are also stored in the shared blackboard.

The atomic Height Setting element is similar to the previous



one, except here only the height of the end effector matters.
The user must set this value by adjusting the end effector,
and the system records it. This is the default height level
the arm will use during operations unless overridden. The set
height value is communicated to the robotic arm. For both the
Reference Point Registration and Height Setting components,
error checking is performed to filter out values outside the
workspace.

After successful execution of the Camera and Robotic Arm
components, all conditions are met to run the Projective
Transformation element. In this step, the mapping between
the two planes is established using the method described
above, and a transformation function is built that can convert
coordinates between the two systems. Although at least
four reference points are required for mapping, this does
not guarantee that the transformation exists. The underlying
system of equations may have no solution, for example, if the
reference points are collinear [11]. In such cases, calibration
must be repeated.

On the user interface, the calibration process includes an
additional step for selecting the test device. However, this only
sends feedback to the server and is not part of the behaviour
tree, as it is always considered a successful operation.

IV. TESTS

Software tests typically run in a virtual environment
where all parameters can be precisely controlled. In contrast,
hardware testing must account for physical factors such as
mechanical elements of devices, which can present significant
challenges. For all these tests, a structure had to be devised that
can support testing for touchscreen or other hardware devices
as well.

Some interaction elements (such as buttons, scrollers,
touchscreen interfaces) provide the user with the opportunity
to move from one state of the system to another. These states
can be considered as different pages or user interfaces between
which the user can move through a specific action. For
example, by pressing the Back button, the user can return to a
previous state from the current page, while a Like button does
not change the navigation state, but performs a modification
on the given page (for example, by updating the state of an
element).

After studies, the idea emerged that the structure enabling
navigation can be effectively represented in the form of a
graph, regardless of whether a given operation actually results
in a state change or merely performs a modification within the
screen.

This approach enables structured mapping of the operation
of applications and hardware devices, as well as helps define
and execute automated tests. States (pages) can be interpreted
as nodes of the graph, while interaction elements that perform
various operations, such as navigation, button presses, or
modifying settings, constitute the edges of the graph.

The graph-based representation not only enables structured
mapping of the operation of applications and hardware
devices, but also contributes to the efficient design and

TABLE II
DESCRIPTION OF THE EDGE OBJECT FIELDS

Field Description
id The unique identifier of the edge, which

allows for unambiguous identification.
componentName The name of the interactive component found

on the application interface.
from The node (page) from which the navigation

starts.
to The node (page) to which the navigation

occurs.
static Boolean value: for static (true) edge there is

no navigation, while for dynamic (false) there
is.

deltaHeight The parameter of the touch function that
modifies the default execution height.

push Boolean value: if true, pressing is required; if
false, touching is enough.

action The name of the interaction operation.
direction The direction of the operation (e.g., up, down

for scrolling).
hold The duration of the touch in seconds.

execution of automated tests. With this type of representation,
testing paths can be precisely defined, potential errors can
be more easily identified, and it can be ensured that every
interaction is covered during the testing process.

To store the data in memory, structured JSON files are
used. In this format, nodes (pages) and edges (interaction
elements) can be easily defined, which help to accurately
and comprehensibly represent the navigation tree of the
application or system. This ensures that the system remains
easily modifiable and expandable, while the data remains
well-structured and simple to manage.

The tests that the user can create consist of steps. Each
step represents edges in the graph, that is, operations that
test the functionality of the given test device. For example,
checking the correct operation of a button or examining the
response of an interaction element may belong here. The sum
of the individual steps constitutes the complete test. Since the
steps of the tests are determined by the graph structure, they
automatically fit into the navigation process of the system and
provide an opportunity to test functionality.

The parameters stored in the JSON objects of the navigation
graph contain not only the data that the user needs to know
directly, but also other background information that is essential
for the operation of the system but not necessary for the user.

There are two main object lists in the JSON file: nodes
(nodes) and edges (edges). Within the nodes object list, other
objects are stored that have an id and a name field, where the id
represents a unique identifier, and the name is the name of the
page within an application/interface. Within the edges object
list, the edges are stored (see edge object fields in Table II).

The tests and their correctness conditions are received by
the backend server in JSON format, which then checks and
processes them.

Each test step has a behaviour tree assigned to it, which is



Fig. 4. Decision tree for the execution of steps

responsible for recognizing objects in the image provided by
the camera and executing the desired operation (see Fig. 4).

The Step executor is a sequential component that runs all
of its direct subordinate elements, the Action selector and the
Execution. If any of these components do not execute correctly,
the entire step is considered unsuccessful.

The Action selector is a selector component that stops after
running the first successful direct subordinate element. This
allows the system to decide which operation the given step
belongs to.

The Action selector component has three subordinate
elements: Touch, Scrolling, and Rotation. All three are
sequential components, from which the system selects which
operation to execute based on the supported operations, and
also sets the necessary parameters.

During the execution of these operations, the Touch,
Scrolling, and Rotation condition components can return
success or error states, which decide which operation should
continue.

For the Touch and Rotation operations, an interface
component must be recognized on the test device. The Object
detection node is responsible for this task, which sets the
appropriate coordinates of the component using the so-called
blackboard keys. These coordinates can be read by later nodes
and used to execute the given operation.

In the case of Scrolling, it is not necessary to recognize
a component, but rather to determine the position of the
device, the so-called Phone scrollable path. This requires two
coordinates that describe the path where the scrolling operation
should be performed. Using computer vision, the frame of the
phone screen can be outlined, and using distance analysis, the
section where the user typically scrolls can be determined. To
solve this task, the fitLine function of OpenCV is applied.
In this case as well, the two coordinates needed to determine
the section are stored using the blackboard keys.

After the Action selector has successfully completed the
tasks necessary for the operation, the Execution node reads
from the blackboard the scrolling coordinates (if they exist),
and the component centre point coordinates, which were set by
the Object detection nodes. For each operation, the appropriate
functions belonging to the robot module are called.

Fig. 5. System architecture

To check the correctness of tests, predefined conditions are
needed that ensure the success of the test can be evaluated.
These conditions allow the user to decide on a test result
without reviewing the testing process on video or personally
monitoring the execution.

The system provides the opportunity to create customized
correctness conditions. The user can select those interface
elements that must be present after the test execution, as well
as those that should not appear. If the user does not define
custom conditions, the default criterion for success is that
at least 60% of the expected interaction elements should be
recognizable after execution.

For other testing possibilities, OCR (optical character
recognition) algorithms are applied, which are capable of
extracting textual information based on images. The user can
specify an expected text for each step that should appear on
the screen of the device being tested after the step is executed.
This provides an opportunity for the system to automatically
check whether the device has actually entered the desired state.
The best performing solution is EasyOCR, an open-source
Python library that supports character recognition in multiple
languages.

To increase the accuracy of text recognition, the images go
through multi-step preprocessing before the OCR algorithm
runs. The input image is first converted to greyscale, then
the contrast is increased using the CLAHE (Contrast Limited
Adaptive Histogram Equalization) method to better distinguish
the text from the background. After that, a sharpening filter
is applied, which further highlights the characters, and finally,
the image is enlarged so that the OCR can work from a higher
resolution.

V. ARCHITECTURE

The application consists of two distinct components: a
processing layer and a presentation layer. The processing
layer contains all functionalities related to object detection and
device control, while the presentation layer communicates via
HTTP requests to display relevant features to the user (see



Fig. 5). During the execution of the processing layer, it is
crucial to consider hardware resources, as this layer requires
greater computational capacity due to model execution and
multithreading. Thanks to the clear separation of layers,
the presentation layer does not impose significant hardware
requirements and can be easily deployed elsewhere.

Communication between the layers is handled via a REST
API, with the exception of video streaming, which uses sockets
for increased speed.

The processing layer (backend) is implemented in Python,
as the Dobot Magician Lite must be programmed in this
language, and state-of-the-art AI tools such as YOLOv8 are
also available in Python. This layer also provides an API for
the presentation layer, functioning as a backend server.

The presentation layer is a web interface served by a
Flask server, because it offers all needed functionalities
without unnecessarily burdening application performance.
The robotic arm and camera are connected to the server
exclusively via USB cable, which significantly complicates
remote deployment.

The backend server provides numerous functionalities for
the presentation layer, which are offered through an API
following REST conventions, a logical and well-organized
framework for endpoints. All endpoints use the convenient
and natural JSON format for payload transmission.

Persistent data storage is handled by a PostgreSQL database,
chosen for its efficient handling of JSON data and excellent
compatibility with Python. The database includes tables such
as Tests, Configs (loadable calibrations), and Subjects (test
devices). The server can connect to a local or remote
database, the location of which is configurable via environment
variables.

The web application is written in JavaScript using the React
library, resulting in an intuitive and clean interface. Since the
application is not intended solely for experts, this is taken into
account during interface design.

A designer is involved in the interface development,
resulting in a design prototype created in the Figma design
program, which serves as the basis for the website. The
required React components are built by customizing elements
provided by the Bootstrap library.

All functionalities of the web application are accessible
exclusively to authenticated users. User management is
provided by a private Keycloak server, made available for the
project by Codespring.

VI. CONCLUSIONS AND DEVELOPMENT OPPORTUNITIES

The system presented in this paper provides an opportunity
for the user to test a device requiring interaction using a robotic
arm, relying on object detection. The testing process can be
accessed through a web application, which ensures access to
the functions provided by the application. After calibrating the
arm, the user is able to execute a multi-step test. The system
offers individually specifiable verification conditions for each
test and step, which automatically evaluate the success of the
test.

The foundations of the system have proven to be
well-usable; however, further developments are needed to
increase reliability. In addition, several functionalities can
be incorporated that enhance the user experience and bring
it closer to a marketable state. The following development
opportunities are noteworthy:

• Importing and exporting test configurations from a
database, as well as creating a dashboard where the user
can view previously run tests and their results.

• Creating statistics based on the executed tests and their
results, such as success rate, common errors, average
running times, etc.

• Providing the opportunity to run multiple tests
consecutively and automatically.

• Developing a system that allows the user to introduce
new test devices.

• Implementing the deployability of the backend server, as
well as detaching the communication with the robotic arm
from the wired connection.
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