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Abstract—In recent years, Ultra-Wideband (UWB) technology
has become increasingly prominent in the field of indoor
positioning systems due to its high accuracy and reliability.
This paper presents a UWB-based system that demonstrates the
advantages of the technology over other wireless solutions not
only in theory but in practice as well.

It is aimed at professionals and researchers interested
in communication technologies and IoT systems. The paper
details the system architecture, including hardware and software
components, data transmission methods, and the client-server
infrastructure. It shows how UWB devices can be integrated and
deployed into a scalable and efficient communication system that
enables real-time positioning. It also analyzes the advantages and
limitations of UWB, such as accuracy, interference handling, and
energy consumption.

Index Terms—Ultra-Wideband; indoor positioning; GPS
alternative; telecommunication

I. Introduction
Over the past 50 years, Global Positioning Systems (GPS)

have evolved from military tools to essential components of
daily life [1]. Billions of people rely on the navigation and
location services it provides on a daily basis. While GPS
has had a revolutionary impact, it also comes with several
limitations, especially regarding signal interference [2], [3].
Since GPS relies on clear line-of-sight between satellites
and receivers, its signals can easily be disrupted. In urban
environments, tall buildings, tunnels, or dense vegetation can
obstruct, reflect, or distort signals, leading to inaccuracies or
even total signal loss. Because GPS is primarily optimized
for outdoor use, it performs poorly indoors, where walls and
other obstacles further weaken the signals, often resulting in
unreliable results [4].

Current indoor positioning systems mainly rely on Wi-Fi,
Bluetooth Low Energy (BLE), and RFID-based technologies.
BLE [5] is low power and widely available, but typically
offers only 4-5 meter accuracy, and is sensitive to obstacles
and interference [6] (see Fig. 1). Wi-Fi-based methods
such as fingerprinting or CSI-based approaches can achieve
better accuracy, but come with calibration and storage
overheads, and are difficult to scale across large areas [7],
[8]. RFID is cost-effective and easy to deploy, but typically
requires line-of-sight (LoS) and struggles with complex indoor
obstacles [9]–[11].

The current project introduces a novel solution to precise
indoor positioning, leveraging the advantages of the emerging

Fig. 1: BLE error distribution

Ultra-Wideband (UWB) [6], [12], [13] technology. UWB
offers centimeter-level accuracy in complex environments,
it is less sensitive to multipath interference and handles
non-line-of-sight (NLoS) situations effectively (see Fig. 2).
Furthermore, it supports low-latency, stable communication,
making it ideal for applications where precision and reliability
are critical. Although UWB’s adoption is currently limited, its
technological benefits position it as a promising alternative to
traditional indoor positioning systems.

The core of the associated application is built upon the
Qorvo DWM1001 product family and its accompanying
software toolkit, bridging UWB communication with more
abstract layers. This paper provides an overview of the
UWB-based positioning system, detailing its architecture in
the following structure: Section II introduces the key features
of UWB technology, Section III focuses on the application
architecture, with particular emphasis on the firmware
functionalities and the client-server model. Section IV
elaborates on the technologies used, while Section V examines
the practical application of the system.

II. The UWB Technology from a Top-Down Perspective

Ultra-Wideband (UWB) is a short-range wireless
communication technology defined by high bandwidth
(>500 MHz), low energy consumption, strong security, high
accuracy, and minimal interference [12]. Unlike traditional
methods, UWB operates over a wide frequency range, making



Fig. 2: UWB error distribution

it highly resistant to interference and ideal for positioning.
Although UWB has existed since the 1960s, commercial
adoption began in 2019, and it has since been integrated into
modern smartphones to support asset tracking.

A. Main Application Areas
UWB technology has seen growing adoption in domains

where high-precision, short-range communication is essential.
In industrial and logistics environments, it enables real-time
asset tracking of thousands of items simultaneously [12].
Automotive systems use UWB for secure, keyless entry in
premium vehicles, offering improved resistance to signal
manipulation. Smart home setups also benefit from UWB’s
spatial awareness, allowing automation based on user
proximity. In healthcare, wearable UWB devices support
patient monitoring and remote diagnostics [14].

B. UWB Positioning Methods
A key advantage of UWB is its ability to operate where

traditional positioning technologies fail. Unlike BLE, it avoids
interference with other systems, improving reliability.

Two primary methods are used for positioning:
• Time of Flight (ToF): Measures the time for a signal

to travel from transmitter to receiver, via single- or
double-sided exchange.

• Angle of Arrival (AoA): Uses multiple antennas and phase
difference (PDoA) to estimate the signal’s arrival angle,
enabling 2D or 3D localization.

Most systems use tags (receivers) and multiple anchors
(transmitters) to compute the tag’s precise location.

C. The UWB Superframe Structure
UWB communication uses a deterministic time-division

multiple access (TDMA) system, built on a 100ms cyclic
superframe (see Fig. 3). Key components include:

• 30 Transmitter Message Slots (BCN): Anchors broadcast
their position and network status.
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Fig. 3: UWB superframe structure

• 2 Service Slots (SVC): Used for Almanac messages and
IoT data exchange.

• 15 Two-Way Ranging Slots (TWR): For measuring
distances between tags and anchors.

• 30 Bridge Node Beacon Slots (BNB): Bridge nodes
advertise IoT data availability.

• Guard/Idle Time: Absorbs timing errors and ensures
frame stability.

Positioning typically uses SS-TWR (Single-Sided Two-Way
Ranging), which enables tags and anchors to exchange up to
34 bytes securely. This data is transmitted via Bluetooth or
UART to a connected device.

All communication is synchronized to the superframe. The
initiator anchor controls timing, and other nodes follow the
schedule. Tag devices perform ranging in their assigned slots,
initiated via Group Poll messages and confirmed with anchor
responses. Reserved slots prevent collisions.

This approach supports accurate, scalable positioning,
with periodic slot allocation allowing many tags to
operate simultaneously. Strict temporal segmentation ensures
predictable behavior, even in dynamic or congested networks.

III. Application Architecture
This section outlines the hardware and software components

of the application. It describes the physical devices, then
covers the software architecture, firmware roles, localization
mechanisms, and network scalability. Server and client-side
elements are discussed, followed by the communication layer
connecting them.

A. Hardware Components
The core of the system is built on DWM1001 modules by

Qorvo1 (formerly Decawave), which integrate the DWM1000
UWB transceiver and the nRF52832 SoC. The transceiver
performs precise Two-Way Ranging (TWR), while the SoC
manages BLE communication and overall module control.

The system is modular and hierarchical, with defined
communication roles. This decentralized design improves fault
tolerance, allowing devices to fail without disrupting the full
network, and supports scalable deployment.

1Product page: https://www.qorvo.com/products/p/DWM1001-DEV

https://www.qorvo.com/products/p/DWM1001-DEV
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Fig. 4: The system architecture

B. System Architecture

Firmware and Roles: All devices run the same firmware,
which enables the DRTLS (Decawave Real-Time Location
System) functionality (see Fig. 4) and assigns behavior
based on configuration as either anchor, bridge, or tag.
The PANS (Positioning and Networking Stack) firmware
handles configuration via Bluetooth or shell and supports
scheduling, ranging, localization, topology recognition,
collision avoidance, and firmware updates.

UWB Devices: The DWM1001 module performs
centimeter-level ranging via UWB, supporting both LoS
(Line-of-Sight) and limited NLoS (Non-Line-of-Sight)
communication. The TDMA-based superframe ensures
deterministic, collision-free data flow (see Section II-C). Tags
learn network topology from broadcast messages and select
3-4 anchors to range with. The process is repeated periodically,
factoring in motion and environmental conditions.

Power efficiency relies on two modes (Responsive, Low
Power) and sleep-capable components. Devices can also
detect movement using an accelerometer to adjust localization
frequency and conserve energy.

Gateway Architecture and Network Integration: Gateways
forward UWB network data to LAN/WAN systems (see
Fig. 4), using a DWM1001 in bridge mode over UWB and
UART. Data is forwarded via MQTT [15], a lightweight
protocol standardized by OASIS, while incoming control
messages can be sent from cloud systems over HTTP.

Typically on Raspberry Pi, the stack includes a UART
module, DWM Daemon, REST proxy, MQTT broker, and
config web server.

The gateway handles both upstream data and downstream
control commands, enabling two-way interaction with the
UWB network. It also initiates firmware updates over the air
via the bridge node.

Location Engine – Positioning Algorithm and Position
Calculation: The Location Engine is responsible for
converting TWR results into position estimates in 3D space.

Fig. 5: Distribution of NLoS positioning errors

It aims to deliver accurate, low-latency data suitable for
visualization, automation, or IoT applications.

Tags use timestamps from TWR with anchors to calculate
time-of-flight. Known anchor positions define the coordinate
system. The position is then estimated using a maximum
likelihood approach, evaluating multiple combinations of
available distance data and filtering out high-error solutions.
Cached anchor data accelerates repeated calculations, and a
moving average across three cycles stabilizes noisy inputs.
Each result is scored (0–100) to reflect estimate quality.

The engine adapts to changing network conditions and
tolerates limited NLoS by discarding unreliable anchors or
down-weighting their influence. It filters multipath effects by
detecting distortions in distance data, improving robustness in
complex environments.

Scalability and Network Sizing: The DRTLS system is
designed for both small and large-scale deployments, but
its performance depends on several factors. Effective anchor
placement is crucial: each tag should ideally range with at
least three or four anchors simultaneously. Anchors should be
evenly spaced–typically 5 to 10 meters apart [16]–depending
on environmental constraints such as walls or metal structures,
which can affect signal integrity.

The TDMA superframe provides 15 TWR slots per 100
ms cycle, allowing up to 150 tags to be queried per
second, assuming each uses a dedicated slot. In higher-density
deployments, the system rotates devices through available
slots, which can increase update latency. This trade-off should
be considered in scenarios such as manufacturing floors or
hospital tracking systems.

Slot allocation is adaptive: tags monitor anchor response
times and change slots if needed. Network topology and
current slot usage are shared via Almanac messages, enabling
dynamic rebalancing and self-healing.

Bridge nodes and gateways can also be scaled horizontally.
Each bridge may handle 30–50 devices [16], and multiple
gateways can feed data into a central MQTT broker for
aggregation and processing at scale.

NLoS (Non-Line-of-Sight) Behavior and Environmental
Effects: UWB is notably resistant to multipath interference,
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but performance may still degrade under NLoS conditions,
such as behind walls, metal objects, or dense materials. In such
cases, signal reflections may cause the system to overestimate
distances by 0.5–1 meters, leading to inaccurate positioning [6]
(see Fig. 5).

The Location Engine detects NLoS through indicators
like high timestamp variance, inconsistent anchor replies, or
measurement errors exceeding thresholds [17]. In response, it
may ignore suspect anchors, reduce their weight in position
estimates, or switch to more reliable anchor sets to maintain
accuracy.

C. Server Components
Data Model: The system uses a relational data model

designed for real-time position tracking and user management.
Entities include networks, anchors, tags, users, groups, and
membership relations (see Fig. 6). Each network links to a
geographic origin used to convert relative positions to global
coordinates.

Tags store real-time coordinates and a quality score, while
each user is assigned a tag for tracking. Groups organize users;
a status table tracks membership for filtering and updates.

API: The backend communicates using a bidirectional,
event-based model, supporting low-latency updates between
server and client. User actions (e.g. device registration, group
edits) are sent as events, with real-time system responses.

Key event types include subscribe,
registerDevice, and createGroup, along with
others for bridge nodes and admin tasks. Server responses
include updates for tag positions, anchor changes, user
or group creation, and structured error messages. The
architecture enables real-time sync and error handling.

D. Clients
Admin Interface: The admin dashboard provides real-time

control and visualization of networks, devices, and groups.
It is modularly structured into components, shared context
definitions, and modal windows for interaction.

State updates are managed via a central service layer that
listens to server messages and synchronizes interface data. Two
visualization modes are supported: a geographic map view
rendered with Leaflet, and a blueprint overlay mode where
custom floorplans can be uploaded. The system draws anchors,
tags, and connection lines interactively, enabling spatial insight
into device relationships.

Mobile Application: The mobile application mirrors the
admin structure, providing users with a live overview of tag
positions and connection quality. It also supports blueprint
overlays with real-time drawing and navigation. Zoom and drag
interactions are smoothed with spring-based animations.

Server Communication: Following UWB-based localization
(see Section III-B), gateways forward data in JSON format via
MQTT. Each tag and anchor is assigned a topic through which
updates and control messages are exchanged.

While the default system uses pull-based communication,
this introduces scalability issues. To address this, each gateway
runs a lightweight MQTT client that pushes incoming data
to the central server over a TCP socket (see Section IV).
This method enables low-latency transmission and supports
optional preprocessing such as filtering or transformation at
the edge.

IV. Technologies and Tools Used
The system consists of three main components: a server-side

application, client-side interfaces, and an intermediary data
service.

The server-side environment, as introduced in Section III-C,
relies on the Next.js framework2 and is built in TypeScript.
Although Next.js is traditionally used for server-side rendering
aided full-stack web applications, in this project the focus
is on modular, file-system-based routing and developer
experience tools. The real-time message exchange is facilitated
via Socket.IO3, ensuring low-latency and asynchronous
communication.

The data model storage is managed by a MySQL relational
database system. Communication between the server and
database is handled using the Prisma ORM, providing
type-safe, declarative queries and maintainable data models.

For client-side rendering, including the admin interface
discussed in Section III-D, React and TypeScript are used, with
styling provided by the TailwindCSS framework. This modular
component-based structure allows for reuse and consistent
design. Map visualizations are handled using Leaflet.

The Bridge component is a Python-based application that
collects data from local MQTT brokers and forwards it to the
central server. The Linux OS provided by Qorvo lacks the
required Python version, so Python 3.6 was compiled from
source to ensure compatibility.

The mobile application is built using TypeScript, the React
Native framework4 and Expo. This allows for native iOS
and Android applications from a single codebase, using

2Official documentation: https://nextjs.org/
3Official documentation: https://socket.io/
4Official documentation: https://reactnative.dev/

https://nextjs.org/
https://socket.io/
https://reactnative.dev/


platform-native UI elements. Component updates follow React
logic: when state or props change, components re-render to
ensure responsiveness, while background processes run on
separate threads.

V. Operation of the Application
This section provides a description of the steps involved in

deploying the UWB-based positioning system, as well as the
functionality of the administrator and mobile user interfaces.

A. System Deployment
The deployment of the UWB network is a relatively complex

process. The first step involves using a flasher program–the
tool recommended by Qorvo is Segger, which installs firmware
image files onto the chips. Before installation, the appropriate
device type must be selected; in this case, the nRF52832 chip
(see Section III-A).

This process must be repeated for each device in the
network. One of them must also be connected to a Raspberry
Pi, creating the gateway unit. Gateway configuration is handled
via a file specifying the PAN ID of the target network.

Once configured, the gateway provides an embedded web
interface that displays all devices–both listed and visually
positioned on a coordinate system. Roles (anchor, tag, listener)
can be assigned directly from this interface.

Alternatively, UWB devices include a “wakeup” button to
activate Bluetooth functionality, allowing configuration via the
official Qorvo mobile application.

After setting the roles, anchor devices must be physically
placed in the space–such as a room or building–where stable
connections can be maintained (not overly obstructed or
placed too low/high). Automatic position calibration can then
be initiated, during which anchors calculate their relative
distances and coordinates. The origin is the initiator’s position,
by default at (X=0; Y=0), with the first anchor to the right
at (X=n,Y=0) defining the OX axis. This constraint must be
considered in network design.

After calibration, tags become trackable within the network
and begin transmitting position data to the gateway.

B. Admin Interface & Mobile User
The admin interface begins with a connection status

indicator, providing feedback on system availability and
reacting to error events. A network selector dropdown allows
users to choose the active network. Once selected, all
associated data–anchors, tags, and groups–are displayed, with
toggleable sections.

Groups have a dedicated interface for creation, editing,
and deletion. This is useful for managing logical units like
warehouse sections or conference rooms.

The map view (see Fig. 7) displays anchors and tags on
a Leaflet map, updated in real time. A notable feature is the
Canvas view (see Fig. 8), which allows uploading custom floor
plans and positioning anchors graphically. Reference points
can be marked by clicking, and layouts are saved with one
click. This combines a visual editor with real-time monitoring.

Fig. 7: The map view

Fig. 8: The Canvas view

The mobile application follows the same principle. Users
first register with a chosen name, linked to a specific internal
ID, enabling visual tag representation (see Fig. 9). The Canvas
view on the mobile app is illustrated in Fig. 10.

After registration, the app displays the current position and
system data. If the user belongs to a group, all active devices
in that group are shown. Tags are color-coded for clarity. This
is particularly useful in scenarios where multiple people or
devices are tracked simultaneously, such as events, on-site
locations, or healthcare institutions.

The system presents information in three ways:
1) In plain text format.
2) On an interactive map, using Leaflet for geographic

positions.
3) On a floor plan-based interface for indoor navigation.
The map and floor plan views allow users to visually track

the movement of tags in real time.

VI. Conclusion & Future Work

The current paper successfully proposed an indoor
positioning and tracking system using an emerging technology,
namely UWB. It presented the advantages above competing
technologies, such as BLE and Wi-Fi, and materialized a
full system, describing its architecture and usage. Real-world
deployment revealed practical and technical challenges, some



Fig. 9: Mobile app
connection menu

Fig. 10: The Canvas view
on the mobile app

absent from official documentation, requiring a more nuanced
interpretation of existing claims.

The key challenge has been adapting a theoretically sound
design to constrained environments with strict architectural
and power-related limits. Despite these compromises, the
implementation provides valuable insight into the technology’s
real-world applicability.

Any discrepancies between observed and documented
behavior largely reflect the project’s focus: to prototype a
working system, not optimize for precision or energy use.
Current measurement insights remain preliminary but form a
strong foundation for future improvements.

While the current system is functional and promising,
several areas remain open for improvement–particularly in
long-term scalability, accuracy, and usability.

The DWM1001-based setup has inherent limitations. It
is highly sensitive to environmental conditions: without
line-of-sight between tag and anchors, accuracy degrades
significantly. More critically, the strict anchor placement
requirements (see Section V-A) are difficult to adapt to
irregular indoor spaces. This restricts deployment flexibility
and hinders broader adoption. Future iterations would benefit
from more flexible architectures, using newer UWB modules
or alternative localization methods.

Power consumption also poses a challenge. The Raspberry
Pi and UWB combination has high energy demands, limiting
operating time and complicating large-scale deployment.
Although energy efficiency was not a primary goal, future
work should consider low-power custom hardware capable of
sustained battery operation.

The trilateration algorithm also needs refinement.
Discrepancies between calculated (x, y) coordinates
and real-world positions distort visualizations. Improved
calibration and algorithmic tuning will be necessary to reduce
these errors.

An Extended Kalman Filter (EKF) could offer a promising
solution to smooth position updates. By reducing sensor noise
and improving motion continuity, the EKF could enhance both
reliability and visual stability.

Finally, newer-generation modules such as the DWM3001
present further potential. These support UWB-enabled
smartphones (e.g., iPhone 11+5, newer Samsung and Google
Pixel models, enabling mobile integration and new interaction
models. The DWM3001 also supports angle-of-arrival (AoA)
measurements, adding a new spatial dimension to localization.
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