
Energy-efficient Timetable Display
for Meeting Rooms using e-Paper Technology and

Low-powered Microcontrollers
Cintia Szabó

Babeş-Bolyai University
Cluj-Napoca, Romania

cintia.szabo@stud.ubbcluj.ro

Krisztián-Tamás Antal
Codespring

Cluj-Napoca, Romania
antal.krisztian@codespring.ro

Levente-Zoltán Bartus
Codespring

Cluj-Napoca, Romania
bartus.levente@codespring.ro

Károly Simon
Babeş-Bolyai University
Cluj-Napoca, Romania
ksimon@cs.ubbcluj.ro

Abstract—Company meetings have an important role in the
decision-making process and the monitoring of daily work activ-
ities, having a powerful impact on the future of the organizations.
Meeting rooms provide a physical space for these events, however
their number is limited, which makes both their booking difficult,
as well as keeping track of their schedules more complicated.

The purpose of this research is to develop a solution for
providing easy to access information regarding the status and
daily schedule of a particular meeting room. This would help
avoid possible overlaps and other inconveniences that can occur
if reservations are not tracked accurately. The main goal was
to build a device composed of low-cost hardware components
that are also energy-efficient, while providing a configurable and
easily programmable interface.

Multiple prototypes with different hardware and software
components were designed, implemented and compared, leading
to a microcontroller powered device, as the final result. It is an
easily configurable device that can connect to an internal wireless
network, it has an energy-efficient e-Paper display and a rotary
encoder for managing user interactions.

In order to simplify the management of multiple rooms and
devices, a central server has been created, providing integration
with calendar services. The server is also designed to run
within the company’s internal network, guaranteeing security
and possibility for customization.

I. INTRODUCTION

The future of a company or an institution is shaped by
the decisions that are made during meetings and negotiations,
therefore their impact is quite considerable on both short
and long term. These events are mostly held in meeting
rooms that are limited in number and capacity, meaning
that scheduling them for in-person meetings is a demanding
task, and must take into account their quantity, capacity and
timetable. Staying up-to-date with a specific meeting room’s
agenda and status can also be a challenging task.

As a potential solution a display could be placed next
to each meeting room, providing information regarding the
current occupation status of the given room. Furthermore,
a timeline could be displayed which is divided into hours
of a workday, where the reserved intervals are marked. By
providing a clear view of the agenda, these displays could
help to avoid common inconveniences such as disturbing an
ongoing event.

The aim of this research was to compare hardware and
software configurations for developing a device that is cost
and energy efficient, and also easily programmable and config-
urable. Some of these aspects might be conflicting, for instance
inexpensive components, such as microcontrollers are more
difficult to program due to their limited memory capacity.
Therefore, during the development process the goal was to
test different components in order to find an optimal balance
between the listed objectives.

The device consists of four parts: an operating unit, a
display, an adapter [1] for connecting these components and a
rotary encoder [2] for managing user interactions. The original
idea was to use a Raspberry Pi Zero for the implementation,
but due to the global stock shortages, the development started
with a Raspberry Pi 4B. That was later replaced with a Rasp-
berry Pi Pico W, which offers reduced power consumption
for the price of smaller memory capacity. As for the screen,
the e-Paper display [3] is a device designed to save power,
since it only reflects the ambient light without having emission
of its own, and also retains the projected image even in the
absence of a power source [4]. The rotary encoder serves
multiple purposes at once. On one hand, it works as a switch
between the different inner states of the display. On the other
hand, it allows navigation on the display. For instance, in
calendar mode the user is able to navigate between days
using the encoder. The device communicates with a central
server, which provides an abstraction above different calendar
services, ensuring a unified interface.

Similar devices already exist, each having their own benefits
and drawbacks compared to the currently presented device.

As presented in the comparison table in Fig. I, this solution
has a clear advantage when it comes to price, despite the
fact that it varies depending on the operating unit. In some
cases (Joan 6 [5], Tapirx [7]), a possible security issue is
present due to the fact that the server is hosted by an external
service provider. This problem is avoided by the currently
discussed solution, since each client runs its own server in
a separate environment within the internal network of the
institution, ensuring security and maintaining a high level of
customizability. Another benefit is having direct user-display

Price Server Interactive
display

Joan 6 [5] €349 +
subscription external yes

SyncSign [6] €349 internal no
Tapirx [7] €259 external no

Peresented device €90-150 internal yes

Fig. 1. Comparison of similar devices

interaction, in the form of using the button, and in Joan 6’s case
by touching the screen [5]. The rest of the presented devices
require the installation of applications in order to establish a
connection.

It is also important to mention that despite the fact that
the use case discussed in this article is related to company
meetings and meeting rooms, the display might be used for
other purposes too, such as providing information points in
museums or public libraries, conferences or social events held
in multiple rooms, etc.

II. HARDWARE COMPONENTS

As discussed in the previous section, the device consists of
several hardware components illustrated in Fig. 2. These com-
ponents were selected taking into account their availability,
maintainability, compatibility, usability and power consump-
tion.

Fig. 2. Hardware components: Raspberry Pi 4B, Raspberry Pi Pico W, KY-
040 Rotary Encoder, Waveshare Adapter, Waveshare 7.5 inch e-Paper display

A. E-Paper display

The e-Paper display is a reflective display, which increases
its readability and enhances its power efficiency. Therefore it
is widely used in public spaces to display information, such
as prices and timetables.

The currently used model is Waveshare’s 7.5 inch e-
Paper display [8] with a resolution of 800x480 pixels. The
screen uses e-Ink technology, meaning that it is made up of
microcapsules which contain black and white particles [?].
Their visibility depends on the positivity and negativity of

the capsules’ charges. The image is displayed in black and
white colours, which is sufficient when it comes to provide
comprehensive information about the status of a room [?].

Waveshare also provides a native library [8] for all e-
Paper models, which is available in Python, MicroPython and
C. These libraries offer methods to manipulate the image
displayed on the screen.

B. Rotary encoder

The KY-040 encoder [2] is an inexpensive button, support-
ing two operations – namely, rotation and pressing – through
which interactions can be executed.

There are several pre-existing software modules for process-
ing interactions with the encoder, and with a few modifications
on their functionalities these modules were able to meet the
project’s requirements.

C. Raspberry Pi

The Raspberry Pi 4B is a single-board microcomputer. This
model contains a quad-core 1.5GHz processor and 1-8GB
of memory. It has its own operating system, a Unix-based
Raspberry Pi OS developed specifically for Raspberry Pi.
Contrarily, the Pico W is a microcontroller, having a more
limited memory capacity, with only 264 KB of RAM and
2 MB of flash memory. Unlike a microcomputer, it has no
operating system and can only run prewritten code [9].

There is a significant difference between the power con-
sumption of these models. When idle, the 4B model consumes
540 mA, while the Pico consumes 38 mA. Despite the less
power consumption, it is more cumbersome to program a Pico,
due to the limited memory capacity.

D. Adapter

The adapter [1] enables a connection between the e-Paper
and the operating unit. As for the connection with Raspberry
Pi models, the adapter’s pins are connected to the Raspberry
Pi’s pins via jumper wires.

III. IMPLEMENTATIONS FOR THE DISPLAY SOFTWARE

The purpose of the display is to be a power-efficient, easily
accessible and configurable device. In light of these aspects the
development process consisted of three different approaches,
resulting in three prototypes, and the final version was selected
comparing these implementations.

A. Web interface

This version uses Raspberry Pi 4B as the operating unit
which is equipped with Raspberry Pi OS. The operating
system allows the creation of a web interface running in a
browser, which can be transferred onto the e-Paper display.
The page and the display are refreshed at certain time intervals.

Upon startup the device enters kiosk mode – a state where
only a single application is accessible, preventing the user
from interacting with any other parts of the system. This
functionality is resolved by a shell script that launches the web
application, then opens it in a Chromium browser and displays
it in full-screen mode. A systemd service is responsible for the

automatic start of the application. This service is managed by
the service manager of the Linux-based system, and requires
a configuration file to run the aforementioned script.

Because of its speed and flexibility, the web application is
created using the Vite [10] build tool. The code is written in
TypeScript and its components are put together using React
libraries, for instance react-big-calendar. The results can be
seen in Fig. 3.

Fig. 3. Web interface

The redirection to the display is done using the ePaper.js
[11] library, which offers a set of commands for drawing the
content of the web page on the e-Paper display.

Developing and maintaining the look and feel of the display
is a relatively simple task using these tools and technologies.
As a downside, a browser has to be constantly running on the
Raspberry Pi, which leads to a higher power consumption.

B. Native libraries

This prototype also uses Raspberry Pi 4B as operating unit.
Python is used as programming language, because it provides
a number of libraries for simplifying the development process.

Waveshare provides libraries for every e-Paper display
written in C and Python – one for each model [8]. Their
epd7in5.py library contains functions that implement display-
manipulating operations. An Image object from the PIL library
is the interface for drawing on the display. Thus, a calendar
can be created by drawing different shapes, letters and icons
on the Image. Although this process provides more flexibility
from the perspective of UI design, it is more cumbersome to
create a fully functional user interface using this approach.

The rotary encoder is also integrated in this prototype using
the pyKY040 module. The display only shows an 8 hour
period, but there is a scrolling functionality implemented.
Rotating the encoder shifts the displayed interval, or switches
to the preceding or the following day.

C. MicroPython with Pico

This prototype is powered by a Raspberry Pi Pico W,
meaning that the microcomputer was replaced with a mi-
crocontroller. Due to the limited resources of the controller
MicroPython is used as programming language, since it

provides more control over the memory. MicroPython is a
version of Python implemented and optimized specifically for
microcontrollers, but it only contains a smaller set of Python
libraries [12].

The implementation is based on the previously discussed
prototype, the goal being to migrate its Python code to Mi-
croPython and add other functionalities. However, the absence
of some libraries makes this process complicated. For instance,
there is no alternative to Python’s datetime library, which
requires additional development efforts. The handler of the
display and the encoder is also replaced with a combination
of different implementations to suit the project’s requirements.

1) Event-driven workflow: The set of all possible opera-
tions is comprised of the different interactions supported by the
encoder: short or long button presses and right or left rotation.
The program continuously monitors when such an action is
performed and handles the event. The same interaction may
lead to the execution of different operations depending on the
state of the terminal.

In order to enter the configuration mode, a long key press is
required. This involves pushing the encoder for two seconds or
more. When the state is activated, an access point is created,
to which a connection can be established using a laptop or
a mobile phone. The name and password of the access point
are randomly generated. While in this state, the device hosts
a web page (see Fig. 4), that can be accessed at a specified IP
address. It provides an interface for configuring the network
parameters and the server’s URL.

Fig. 4. Configuration interface

By submitting the parameters the system tries to connect
to the WiFi network and checks the availability of the server.
The result of these operations will be displayed on the screen,
i.e. it prints whether the configuration was successful or not,
and then exits the state.

After the successful configuration a short press switches to
room selection mode (see Fig. 5b) listing the names of the
existing rooms. A frame marks the currently selected room,
and the selection can be changed by rotating the encoder. With
a short press the current selection can be confirmed and the
system enters the calendar mode.

The calendar mode is the main state (see Fig. 5a). It shows
a timeline divided into hours with rectangles representing the
busy periods. The name of the room is at the top of the screen
and next to it an icon indicates the current occupancy status.

(a) Calendar mode (b) Room selection mode

Fig. 5. Different states of the terminal

Below the selected date, the corresponding timeline and the
battery status is shown.

2) Working with the e-Paper display: The basic functions
can set the color of the pixels on the display. Therefore by
combining several existing implementations it is possible to
define higher level operations, such as drawing lines, rectan-
gles and .pbm images. The elements to be drawn are stored
in memory and are only displayed once the show() method is
invoked. Whenever the content is updated the screen flashes
black to ”clear” itself.

The buffer of the display is a byte array and stores the image
to be drawn. For fast and efficient manipulation of the buffer
the memoryview class is used, which avoids unnecessary data
copying and provides direct access to the elements. Since it
is a black-and-white display, one bit is sufficient to encode
the color of one pixel (zero being white and one being black).
Hence, every element of the byte array represents eight pixels.

3) Working with the rotary encoder: The current encoder
handler is based on an asynchronous implementation [13] to
which the short and long presses are added. Interrupt handlers
are added to the three pins of the encoder to handle an event,
making the delayed loop execute the appropriate callback
functions by setting a thread safe flag.

4) Improvements: During the development process several
improvements have been made to optimize the implementa-
tion, achieving a faster and more stable operation.

The first improvement addresses a performance issue related
to the construction of the calendar’s image in the buffer (ini-
tially lasting 13 seconds) and displaying that image (initially
24 seconds) on the screen. Instead of writing the pixel values
one by one, sending them at once reduces the time needed
to display the image to 5-6 seconds. Moreover, the rectangles
that indicate the occupied periods are fully filled, and in this
way all the corresponding bytes can be set at once, reducing
the time needed to build the image in the buffer.

Another improvement relates to the memory errors that
could occur due to the limited memory capacity of the device.
In total there are 153 KB of free memory, of which importing
the libraries takes 43 KB and instantiating the encoder and

display managers cost an additional 48 KB, leaving only
around 60 KB to work with. As a solution a garbage collector
is called after every event in order to keep the remaining
memory available.

In order to make the best use of the available memory, the
modules are imported into the code as precompiled bytecode
in the form of .mpy files, causing the main program to skip
the compilation process when it runs. In this way the compiled
bytecode is not stored in the RAM, it is loaded directly from
the flash memory.

D. MicroPython with ESP32

Similarly to Pico, the ESP32 is a microcontroller that also
integrates Bluetooth and WiFi. Despite the fact that it is three
times the price of a Pico, it has a lower power consumption
(20-25 mA), 4 MB flash memory, 520 KB RAM, and a
processor performance that excels its rival’s.

The currently used version has an adapter [14] built into
the board making it possible to directly connect to the e-Paper
display. At the start of the program it has 101 KB memory
available, which is less than Pico’s 153 KB. The remaining
memory is taken up by the MicroPython language and its
libraries.

ESP32 can also be programmed using MicroPython, thus
the aim was to create a cross-platform adaptation of the
previously described software prototype for both Pico and
ESP32. However, ESP and Pico use different versions of
MicroPython. After several development iterations, the cross-
platform version is still unstable, for instance, the displayed
image sometimes fades to a greyish tint, and other problems
occur during runtime. Thus, the development and improvement
of this solution is still in progress, and at the moment it cannot
be considered a working prototype.

E. Comparison between implementations

The implemented prototypes were compared considering the
project’s main objectives: price-efficiency, energy-efficiency
and programmability.

Web interface Native MicroPython
Price-

efficiency ## ##

Energy-
efficiency ## #

Easily
programmable # ##

Fig. 6. Comparison table of different implementations

According to the comparison table presented in Fig. 6, when
it comes to price- and energy-efficiency, the third prototype
seems to be the most suitable one. However, due to the limited
resources of the microcontroller, this version required extra
attention from the perspective of software implementation.
Despite this drawback the aforementioned aspects represent
significant advantages, and it is also easier to integrate a
smaller microcontroller into the back of the display.

IV. SERVER

A central server is also part of the project, providing a
connection between the calendar service providers and the
operating units. As it can be seen on Fig. 7, the server acts as
an intermediate layer, which is responsible for processing the
incoming requests and sending responses to these requests. It
is also responsible for the authentication required to access the
calendar services. Responses from different calendar service
providers are brought to a uniform structure.

Fig. 7. System architecture

The server is supposed to be hosted within the internal
network of a company, so it can be easily configured to suit
the company’s needs and does not cause security problems.

A. Endpoints

There are two HTTP endpoints, both comply with REST
conventions:

• api/v1/meeting-rooms

• api/v1/meeting-rooms/{id}/{date}

The first endpoint returns a JSON list containing the names
and IDs of all the meeting rooms. The second one requires a
room ID and a date as path-parameters. The response contains
a list of all the reservations made for the given meeting room
on that specific day.

B. Structure

The server can be divided into three parts: models, services
and controllers. The main entities of the project are rooms
and corresponding reservations, represented by model classes.
Calendars are represented in the service layer of the server. The
layer contains the ICalendarService interface which defines
a method for returning the reservations of a room. Each
implementation corresponds to an existing calendar service
provider, which is responsible for establishing a connection in
order to access the reservations. Currently there are two im-
plementations: ExchangeCalendar and DummyCalendar. The
latter serves for testing purposes, containing predefined values.
The first one is an implementation supporting the Microsofts’s
Exchange Calendar which is accessed by an internal account
and communication is done through the Microsoft Exchange
API.

The system is controlled by the MeetingRoomController
unit, which manages the list of rooms. It acts as a REST API
and responds to the incoming requests.

V. CONCLUSIONS AND FURTHER DEVELOPMENT

The purpose of the display presented in this article is to
provide information about the reservations of meeting rooms.
It is equipped with a rotary encoder to interactively access its
functions. It allows the selection of the displayed room and
day, as well as the configuration of the internal behaviour.
Data for the display is retrieved from a server that runs on the
internal network of the company. In addition to the existing
functionalities, further requirements can be formulated that
would help increase productivity and iron out the imperfec-
tions of the project.

Currently only one type of calendar service provider is
supported, other frequently used variations, such as Google
and Yahoo Calendar should be integrated in the future.

Further development ideas concerning the hardware com-
ponents offer improvements and other alternatives. One of
them being the addition of a battery module, thus making
the device portable and independent from the power circuit.
Another development idea replaces the e-Paper display, since
the currently used version does not support partial refresh
of the screen, meaning that even minor changes lead to a
full refresh. This process is time- and energy-consuming,
which would not be the case with a more advanced display.
As previously discussed in section III-D, the cross-platform
solution developed for the ESP32 microcontroller powered
prototype does not function properly, so it still requires further
testing and development.

In addition to viewing the timetable, additional CRUD
operations could be implemented, providing possibility for
the management of the reservations directly from the display
terminals.

REFERENCES

[1] “E-paper driver hat manual.” [Online]. Available: https://www.
waveshare.com/wiki/E-Paper Driver HAT

[2] “Ky-040 rotary encoder user manual.” [Online]. Available: https:
//www.epitran.it/ebayDrive/datasheet/25.pdf

[3] R. Gaddam, “E-paper technology documentation.”
[Online]. Available: https://www.slideshare.net/RajeshGaddam6/
epaper-technology-documentation

[4] A. Joseph, “E-paper technology.” [Online]. Available: https://www.ijert.
org/research/e-paper-technology-IJERTCONV4IS06009.pdf

[5] “Joan6 official webpage.” [Online]. Available: https://getjoan.com/shop/
joan-6/

[6] “Syncsign official webpage.” [Online]. Available: https://sync-sign.com/
product/e-paper-display-7-5-inch/

[7] “Tapirx official webpage.” [Online]. Available: https://www.tapirx.com/
[8] “7.5inch e-paper hat manual.” [Online]. Avail-

able: https://www.waveshare.com/wiki/7.5inch e-Paper HAT Manual#
Working With Raspberry Pi

[9] “Raspberry pi documentation.” [Online]. Available: https://www.
raspberrypi.com/documentation/

[10] “Vite documentation.” [Online]. Available: https://vitejs.dev/
[11] “Epaper.js library description.” [Online]. Available: https://www.npmjs.

com/package/epaperjs
[12] “Micropython documentation.” [Online]. Available: https://docs.

micropython.org/en/latest/index.html
[13] “Micropython async manual.” [Online]. Available: https://github.com/

peterhinch/micropython-async/blob/master/v3/docs/TUTORIAL.md
[14] “E-paper esp32 driver board manual.” [Online]. Available: https:

//www.waveshare.com/wiki/E-Paper ESP32 Driver Board

https://www.waveshare.com/wiki/E-Paper_Driver_HAT
https://www.waveshare.com/wiki/E-Paper_Driver_HAT
https://www.epitran.it/ebayDrive/datasheet/25.pdf
https://www.epitran.it/ebayDrive/datasheet/25.pdf
https://www.slideshare.net/RajeshGaddam6/epaper-technology-documentation
https://www.slideshare.net/RajeshGaddam6/epaper-technology-documentation
https://www.ijert.org/research/e-paper-technology-IJERTCONV4IS06009.pdf
https://www.ijert.org/research/e-paper-technology-IJERTCONV4IS06009.pdf
https://getjoan.com/shop/joan-6/
https://getjoan.com/shop/joan-6/
https://sync-sign.com/product/e-paper-display-7-5-inch/
https://sync-sign.com/product/e-paper-display-7-5-inch/
https://www.tapirx.com/
https://www.waveshare.com/wiki/7.5inch_e-Paper_HAT_Manual#Working_With_Raspberry_Pi
https://www.waveshare.com/wiki/7.5inch_e-Paper_HAT_Manual#Working_With_Raspberry_Pi
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://vitejs.dev/
https://www.npmjs.com/package/epaperjs
https://www.npmjs.com/package/epaperjs
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://github.com/peterhinch/micropython-async/blob/master/v3/docs/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/v3/docs/TUTORIAL.md
https://www.waveshare.com/wiki/E-Paper_ESP32_Driver_Board
https://www.waveshare.com/wiki/E-Paper_ESP32_Driver_Board

	Introduction
	Hardware components
	E-Paper display
	Rotary encoder
	Raspberry Pi
	Adapter

	Implementations for the display software
	Web interface
	Native libraries
	MicroPython with Pico
	Event-driven workflow
	Working with the e-Paper display
	Working with the rotary encoder
	Improvements

	MicroPython with ESP32
	Comparison between implementations

	Server
	Endpoints
	Structure

	Conclusions and further development
	References

