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Abstract—This paper presents a method to recognise fine
motor hand movements and visualise them in virtual space by
using a smart glove. Sensors mounted on the glove provide
data to determine the position of the hands. The presented
system is capable of real-time motion recognition by processing
continuously incoming sensor data, making it suitable for
solving complex problems such as interaction with the VR/AR
world, sign language translation or even as a training tool for
physiotherapists.

A microcontroller-based glove is built for the project, which
monitors head and hand position as well as finger joint
curvature, drawing inspiration from open source projects such
as OpenGloves and LucidVR. Sensor data from the Oculus Rift
VR glasses and the glove is extracted and displayed using the
SteamVR extension in the Unity video game engine. The data is
streamed to the gesture recognition server, which classifies the
motion into one of the predefined hand motion classes.

The paper demonstrates the practical utility of the smart glove
through a simulated traffic management system. The user can
control traffic using the glove by predefined hand movements.
The virtual space is based on the Unity3D game engine and
Unity VR technology.

Index Terms—gesture recognition; smart glove; joint
movement; virtual reality

I. INTRODUCTION

Gesture recognition [1] refers to the identification of
meaningful expressions of motion by a human, involving
the hands, arms, face, head and/or body. Hand gestures are
researched in the field of computer science as they encapsulate
essential information for use cases ranging from sign language
recognition through medical rehabilitation to interaction with
virtual reality. The main approaches to hand gesture research
can be classified based on the nature of their input data: some
deploy wearables such as gloves equipped with sensors, while
others use cameras and analyze visual information [2].

This study focuses on the glove-based sensor approach of
hand gesture recognition. The main motivation lies in the
recognition of fine motor hand movements in real time, and
their representation in virtual space. Both problems require
precise determination of the position of the hands. Data with
sufficient accuracy is collected using a glove, which is created
during the project. The purchase of such a glove proves

to be expensive1, thus it is made in-house using affordable
components.

The literature shows several solutions for detecting hand
movements and gestures. Chen et al. [3] extracts the data
describing hand movements from images captured by a
monochrome 2D camera and uses a hidden Markov model
(HMM) for recognition. Their recognition system consists of
three main parts: real-time hand tracking, feature extraction,
HMM training and HMM-based gesture recognition. Munir
Oudah et al. [4] discusses the advantages and disadvantages
of different hand gesture recognition systems. Systems that use
a camera require fewer tools and are easier to use, but have the
disadvantage of separating the hand from the background of
the image. In contrast, gloves using sensors can extract more
accurate data but limit the user’s freedom of movement. This
is due to the connection to a computer. Connely et al. [5]
presents a similar glove with sensors that acts as a monitoring
device for patients with arthritis. The main use of the glove
described is to monitor the degree of flexion of the fingers,
thereby assessing the patient’s condition and accelerating the
healing process. Their glove focuses on the detection of finger
flexion, in contrast to the glove presented in this paper, where,
in addition to finger curvatures, additional data describing hand
movements is taken into account to detect movements.

The proposed system is capable of recognizing the
continuously incoming hand motion data in real-time, thus it is
suitable for solving various complex problems. In the VR/AR
world, it serves as an additional tool for making interactions
more realistic. It can also be used as a translation tool for sign
language or a tool to assess the patients in physiotherapy.

For the recognition the data is collected from the separate
components of the glove. The data consists of several parts:
head position and rotation provided by the Oculus Rift2 VR
headset. The position and rotation of the hands are also parts of
the data, they are calculated based on values from the Oculus
Rift controllers and from the finger curves provided by the
microcontrollers. A neural network is responsible for motion
recognition, which is accessed through a server. To ensure

1XSens metagloves buyable example: http://bit.ly/4by7zqn
2Oculus Rift: https://www.oculus.com/rift-s/features/

http://bit.ly/4by7zqn
https://www.oculus.com/rift-s/features/


Fig. 1. The glove with the sensors used for the hand movement recognition

real-time information exchange, communication is done via a
WebSocket connection [6].

Another element of the project is the deployment of a
motion recognition server on a Kubernetes cluster [7]. In order
to optimize the deployment, a multi-phase GitLab pipeline is
used to provide access to the neural network used by the server
and to containerize the server itself.

The remainder of the paper delves into the three main
topics mentioned: data processing within the virtual space,
the server responsible for motion recognition, and the
deployment of the server. Section II describes the process
of building a glove for motion detection, as well as the
required components and their operation. Section III details
the architecture of the virtual space, the communication
with the server, and describes a possible application and its
components. In addition, Section IV introduces the server,
provides a description of its deployment and explains the
operation of the artificial intelligence responsible for motion
recognition, its architecture and the prediction process. Finally,
Section V draws conclusions from the thesis and identifies
some opportunities for improvement.

II. THE MICROCONTROLLER-BASED GLOVE

The current section describes the construction of a glove
(see Fig. 1) meant to accurately identify hand movements
both static (position) and dynamic (gestures). The fundamental
signal to be monitored is the curvature and joint position of the
fingers. Hence, the main components of the glove are sensors
measuring finger curvatures, and controllers measuring global
hand positions provided by the Oculus Rift [8]. The headset
can approximate the curvature of the fingers according to the
positions of the fingers on the buttons of the controllers, but
this data is not accurate. The glove extension is introduction
to increase measurement accuracy. The sensor data consists
of several parts: the position and rotation rate of the headset,
which determine the position of the head, and the data
provided by the controllers. These describe the position and
rotation of the hands. The data is complemented by finger
curvature values from additional sensors (see Section II-A),
which help to detect accurate hand movements.

Therefore the glove gives the user the possibility to
influence the virtual world through natural movements with

Fig. 2. The glove components

their own hands, presenting potential usefulness in various
environments.

A. Build

The physical architecture of the glove follows the
LucidVR3 project. Fig. 2 depicts its components: an ESP32
microcontroller [9], potentiometers for each finger, a spring
structure from a moveable card holder, and 3D printed parts
to hold them together. The ESP32 microcontroller is mounted
on a breadboard (electronic test board), which facilitates the
wiring of the cables and their placement. The potentiometers
are placed in separate plastic printed parts that track the
operation of the movable card holders. The plastic parts printed
for the potentiometers contain a spring mechanism to hold the
thread taut for proper operation of the moving contact. When
the finger is not locked, the potentiometer is returned to the
“zero” position. The thread that connects the potentiometer to
the finger is passed through a plastic support. This is necessary
for the tension of the thread.

B. Functioning

Each glove is equipped with an ESP32 microcontroller -
paired with five potentiometers positioned to fit human fingers.
The positioning of the potentiometers allows the curvature
of the fingers to be determined by means of threads and
springs (see Fig. 2). The potentiometer is connected to an
input point of the microcontroller. These devices act as sensors
by measuring the bending of the user’s fingers. The twisting
causes the voltage to change. This way, the data is accurate,
as the slightest movement leads to a voltage change.

C. Calibration

To collect finger curve values, the user has to put on the
gloves, attach the Oculus Rift controllers and then connect
the ESP32 microcontroller on the gloves to the computer via
a USB cable. The calibration requires a fist clench for a few
seconds, as this is how the system remembers the limits of

3https://github.com/LucidVR

https://github.com/LucidVR


Fig. 3. Traffic management inside the VR application

the physical glove’s range of motion. The user can adjust
the rotation of the two arms via the OpenGloves4 software.
For this step, another person is needed to press the “Start
Calibration” button, which will stop the movement of one
virtual arm. The next step in the calibration process is for the
user to rotate his/her own hand in the same direction as the
virtual hand. This operation must be repeated for both hands
separately. The result of the calibration is that the position and
rotation of the two physical hands are identical to the virtual
hands.

III. VIRTUAL SPACE

The current section proposes a visualization mechanism for
the presented hardware, moving it into the virtual space and
maximizing interactivity.

There are several ways to implement visualisations and
simulations: for example, using Python’s PyTorch package.
Unity5 as a video game engine helps to achieve visualisation
by providing built-in solutions for graphical rendering and
physical simulation, thus facilitating the development process.
It also provides an easy to use development solution for VR
systems, as well as the possibility of free licensing. For the
VR implementation, the SteamVR6 [10] package is used.

A. Traffic management system

A traffic management system implemented in a virtual space
illustrates the practical benefits of the hand motion detection
gloves.

The user acts as a traffic police officer. His task is to control
cars by hand movements within a virtual space (see Fig. 3).
At the same time, the technologies and methods used here can
be used in any other related field. The user can give different
commands to the cars by imitating the police officer’s work.
He can stop them or let them pass after the intersection is
cleared. He can also speed up or slow down the cars.

4https://github.com/LucidVR/opengloves-driver
5https://www.unity.com/
6https://github.com/ValveSoftware/steamvr unity plugin

1) City: The virtual space consists of dynamically
generated elements. These elements are buildings, roads and
intersections represented in the virtual space. The location of
each element is defined by a map in the form of a matrix.
It has externally overridable values for dynamic generation.
In the case of roads, the type of road, the location and type
of intersections between roads can be specified. These are
modelled from the Free Road Unity package. Furthermore,
roads are composed of several smaller mesh details that
specify the shape of the road. In addition, the package natively
includes the road search algorithm A*, specialized for roads.
This is used in traffic by the drivers.

The FreeRoad package includes road-related visual
elements: road models with pavements and different types
of road intersections. In addition to the visual elements, it
provides a graphical interface for building paths.

2) Car mechanics: In order to achieve a good user
experience, it is important to have a realistic approach to
the car movement in the traffic management simulation. The
movement of the cars are influenced by many simulated forces,
such as gravity, acceleration, drag, friction, elasticity and even
the force of constraint in case of a collision.

During the project, a realistic engine, brake, steering,
wheel friction and suspension mechanics are implemented. In
addition, a simple car crash mechanism, mainly for visual
purposes, is also implemented. The simulation offers two
different car models.

The Unity Wheel Collider system is responsible for most of
the cars operation. The Wheel Collider is a collider designed
for land vehicles, with built-in collision detection and a friction
physics model based on sliding. The Wheel collider has many
variables that can be manipulated to model different types of
land vehicles. It is possible to set the wheel attributes, shock
absorbing features and the springs behaviour.

3) Drivers: In addition to the operation of the cars, it is
important to control them, also in a way that is close to reality.
An algorithm is responsible for the drivers decision making
and its intensity. Drivers can adjust their speed to the car in
front of them. They also brake before turns and, in case of
other drivers.

In order not to make the traffic simulation too monotonous
and predictable, each driver has five so-called personality
variables, which are randomly assigned from a well-defined
interval. The personality variables determine the driving style
of the driver.

Each drivers behaviour can be overriden by the traffic
officers commands. If the police officer turns towards the car
and shows a predetermined hand movement with the glove,
the driver closest to the officer will respond to the hand signal
and starts following the new instruction. In the absence of an
instruction, drivers will return to their original driving pace
and style.

B. Communication with the server

The virtual reality management system acts as a client side
that communicates with the server side (see Section IV). The

https://github.com/LucidVR/opengloves-driver
https://www.unity.com/
https://github.com/ValveSoftware/steamvr_unity_plugin


data packet that the client sends to the server consists of the
values needed to recognize hand movements. These values are
various sensor data: the position and rotation of the head, as
determined by the Oculus headset; the positions and rotations
of the hands, which come from the Oculus controllers; and
the finger curvature values from the glove potentiometers. The
data is packaged in JSON format.

The client side sends the collected data to the server
for recognition, continuously asynchronously, annotated over
time, one image at a time.

The server processes and evaluates the data and responds in
text form. The server’s response is the name of the identified
hand movement class, or the neutral class if it could not be
recognized.

IV. GESTURE RECOGNITION

Gesture recognition is performed by a server implemented
in Python, using the FastAPI7 web framework, and run
in the Uvicorn asynchronous server gateway interface
(ASGI). The server exposes a single, WebSocket-based [11]
endpoint for bidirectional communication, which provides an
inconspicuous delay in the response.

The server is deployed on a Kubernetes [7] cluster.
Kubernetes is an open source platform for managing
containerized workloads and services. The purpose of
deployment is to make the predictions provided by the server
continuously accessible.

The project is built around a continuous deployment [12]
concept. Continuous integration pipelines automate building,
Docker containerization, which allows the server to run in an
isolated environment, and also the deployment processes.

The Kubernetes topology of the project includes an ingress,
ensuring external access to the server through preset access
rules. It also provides load balancing, HTTPS access and
name-based virtual hosting.

Gesture recognition is performed using artificial intelligence
methods. The first step in gesture recognition is to be able to
recognise static hand movements. These movements consist
of only a single snapshot. The trained AI, a multilayer
perceptron (MLP) [13] neural network (see Section IV-B), is
able to classify a total of 15 classes, which are studied as
a guide rather than as an upper bound. On the other hand,
continuous gesture recognition required the neural network to
not only recognize snapshots, but also take historical data into
consideration. To this end, the MLP model is replaced by a
recurrent neural network based one.

Recognition begins with preprocessing, molding the raw
data into a format that can be interpreted by the neural
network. The latter then performs the classification.

A. Preprocessing

The data received by the server is in JSON format, including
the positions of the head, hands and the curvatures of the
fingers. The preprocessing transforms the data into an array.

7https://fastapi.tiangolo.com/

This includes a frequency function enriched version of the
head direction vector and the hand positions, rotation and
finger curvatures. The method of storing the points of the space
is based on the preprocessing of the NeRF [14] model.

A frequency function defines the position of a point, the
result of which is an array, and its elements give accurate
information about the spatial position over a smaller interval
(in this case [0, 1]). Otherwise, the problem may arise that the
neural network places too much emphasis on some properties
of a point. For example, the data may be in different quantities
or distributed over different intervals.

The direction vector of the coordinates defining the head is
as follows:

f(x) =


cos(x) ∗ cos(z)
sin(x)

cos(x) ∗ sin(z)

Here the variables x and z define the horizontal and vertical
forward directions of the head. These coordinates are obtained
from the frequency function. Furthermore, the position of the
hands, rotation and curvature of the fingers are enriched using
the frequency function.

The formula for the frequency function:

f(x) =

{
cos(2L ∗ π ∗ x)
sin(2L ∗ π ∗ x)

,

where x is a real number, or

f(x) =

{
cos(2L ∗ x)
sin(2L ∗ x)

,

where x is an angle, and L = (1, n), n ∈ N refers to an
element of the array.

The final step of pre-processing is to convert the data into a
tensor, to be used as an input to the neural network. A tensor
is a multidimensional array with elements of the same type.

B. Neural network

The classification of hand movements is handled by an
artificial neural network [15] consisting of three layers: a linear
layer, a long-short term memory layer (LSTM), and finally
another linear layer. The output of the latter is passed to the
Softmax function, which returns an array. The class predicted
by the neural network is the significantly largest element of
the array.

Recurrent neural networks (RNN) [16] are suitable for
processing sequential data models, which is a problem for
other models that can only work with fixed-size data models,
such as MLP (Multilayer-Perceptron) and CNN (Convolutional
Neural Network). Long short-term memory (LSTM) [17] is an
improved version of RNN. Among other things, LSTM solves
the vanishing gradient problem of the RNN by manipulating
the flow of information through three different gates: forget,
input and output. The forget gate selects the information to be
erased; the input gate decides the new data to be added; and
the output gate determines the information to be sent from the

https://fastapi.tiangolo.com/


cell state to the output. It also introduces the concept of cell
state and has its own equations and operations. With all these
modifications, it ensures long term data retention against the
RNN.

With linear layer it is possible to achieve higher
performance and accuracy with the network. The layer
itself is, in most cases, a simple matrix multiplication, to
which a so-called bias vector is added to ensure the layer’s
accountability. The layer is usually followed by a non-linear
activation function, which prepares the output of the layer for
the next step of the mesh.

Softmax [15] is an activation function that is predominantly
used to solve classification problems. The result is a
probability vector showing the probability distribution between
classes. The sum of the elements of the output vector must
return 1, or a value within the rounding error bounds. The
activation function can be written as follows:

softmax(zi) =
ezi

sumN
j=1e

zj

The number of snapshots used for prediction is a system
preference. 10 snapshots are taken every second. In the course
of the project, 25 snapshots are chosen, due to the nature
of the data used for testing. The model classifies the data
into three classes, these are “Stop”, “Accelerate”, and “Slow
down”. All of the mentioned classes consists of repetitive hand
movements. The model’s F1-score averages around 82.5%.
Data that cannot be classified into one of these classes is
assigned to the class defined as “None”. Finally, the model
returns the predicted class as a response to the client.

V. CONCLUSIONS AND FURTHER DEVELOPMENT

This paper presents the development of a system with two
main aspects: artificial intelligence-based recognition of hand
movements and visualisation of hand gestures in a virtual
space powered by a video game engine.

For the recognition, the data received from VR sensors is
supplemented by data received from the smart glove built
during the project. The VR devices used are the Oculus Rift
glasses and its controllers, providing data about the head and
hand positions, respectively. The glove provides more detailed
information about the position of the hands, namely about the
curvature of each finger.

Behind the artificial intelligence is a neural network, whose
training data is fed by the glove. The virtual space provides a
suitable environment for testing the neural network.

To achieve more accurate results, modifications to the
construction of the glove are necessary. Resizing and
redesigning the plastic printed parts that hold the glove
components together would provide a better experience for
users. In order to match the real finger movements as closely
as possible to the recorded finger curves, it is necessary that the
glove can operate within the appropriate parameters without
problems.

For a better user experience an improved calibration process
could be developed which doesn’t require the help of another
person.

Since the ESP32 microcontroller has built-in Bluetooth
support, the Smart Glove is able to offer the user a greater
range of motion by replacing the USB cable connection to
wireless connection. To implement a cable-free connection,
external batteries are required to act as power source.

The range of use can be increased by adding servo motors.
By incorporating servo motors, a more realistic simulation can
be achieved, as they can be used to provide feedback to the
fingers when grasping objects in virtual space, thus making
the user experience more realistic.
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