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Abstract—This work presents a control method for
quadrupedal locomotion utilizing periodic gaits, alongside a
neural network-based solution for the inverse kinematics problem
inherent to these robots. The proposed method evaluates the
stability and execution speed of both periodic-continuous and
periodic-discontinuous gaits. Based on this analysis, the optimal
gait for the robot locomotion can be chosen. For the inverse kine-
matics problem of the 12-DOF quadrupedal robot, a feed-forward
neural network-based solver was proposed. Different training
methods were analyzed. The performed simulation experiments
demonstrate the effectiveness of the proposed computation and
control approach.

Index Terms—Robotics, Quadrupedal locomotion, Neural net-
works, Intelligent control, Inverse kinematics

I. INTRODUCTION

Nowadays, mobile robots are gaining more ground and are
being used in an increasing number of applications, such as
construction and manufacturing industries, healthcare, space
exploration, and military applications [1].

Mobile robots are classified into several categories based
on their motion principles, including wheeled robots, tracked
robots, and legged robots. The choice of robot class for a
specific task depends on environmental conditions and the
task requirements. The properly controlled legged robots are
useful in outdoor environments even in the case of uneven
terrains. The legged robots can be divided into three categories
based on the actuation type: hydraulic actuator, pneumatic
actuator and electrical actuator [2]. Based on the realized
degrees of freedom of a leg, it can be further broken down into
three categories: prismatic legs, articulated legs and redundant
articulated legs [3]. The type of robots being discussed in this
paper are legged robots with an electrical actuation.

Operating a quadrupedal mobile robot safely and efficiently
involves addressing several challenges in both structural and
software design. One such challenge is achieving stable mo-
bility of the robot where both structural design and algorithm
efficiency are big factors. The design of the gait algorithms is
discussed in this paper, alongside the aforementioned study of
stability and velocities for periodic gaits.

The mobile robots can be controlled by personnel through
a controller or remote control software. Movement is also
possible autonomously, that is, without the assistance of hu-
man operators or personnel [4]. Autonomous operation can be

achieved with the use of artificial intelligence (AI). The incor-
poration of artificial intelligence is widely used in quadrupedal
robots due to the mobility and stability of locomotion [1].

Researchers have developed a range of control solutions to
achieve stable locomotion in quadrupedal robots. One study
suggested the use of Proportional Integral Derivative (PID)
controllers and Fuzzy Inference Systems (FIS) to stabilize robot
motion, with parameters tuned by an ant-colony optimization
algorithm [5]. FIS was also utilized for high-velocity galloping
gaits [6]. Managing a wide range of speeds is challenging due
to quadruped systems being more responsive at high speeds
than low speeds, and proportional derivative controllers being
effective only within a narrow range around the calibrated
speed and turning rate [7]. To address this issue, a hybrid con-
troller using fuzzy inference systems and lateral side-stepping
has been proposed. Additionally, a novel intelligent controller
incorporating a new mechanical structure and optimized foot
trajectory was proposed to enable precise trajectory tracking
and a steady gait. It utilized optimized cascade PID and
improved fuzzy adaptive PID control systems with parameters
optimized by the sparrow search algorithm [8]. Furthermore,
an effective control algorithm based on reinforcement learning
(RL) and artificial neural networks (ANN) has been proposed
to replace traditional analysis-based control theories like in-
verse kinematics and differential equations of motion [9].

ANFIS was explored for hexapod control, but membership
functions were reduced due to computational limits [10].
Additionally, a hybrid FMM-RS algorithm was developed
for bipedal locomotion. Results demonstrated that FMM-RS
surpassed the FMM in both static and dynamic conditions [11].

This paper considers each step of the kinematic control of
a quadruped robot. First, the gait method is chosen and its
proprieties are discussed. Second, the prescribed path of each
leg is designed. Third, the inverse kinematics problems of the
legs are solved.

II. DIRECT KINEMATICS

In this paper, the mathematical and simulational models
are based on an actual robot named Dogzilla S1 which was
developed by Yahboom [12]. Most four-legged robots use a
serial mechanism per leg, each leg is mounted to one common
base, in this case, the chassis of the robot, thus making the



architecture parallel [13]. Each leg consists of 3 electrically
actuated joints (DC motors), making one leg have 3 degrees of
freedom (3-DOF). For each joint, we can match a coordinate
system which follows the Denavit-Hartenberg (D-H) standard
[14].

The link lengths (Li) and joint angles (θi) for each leg are
known and measurable. TABLE I presents the D-H parameters
based on [12].

TABLE I
D-H TABLE FOR THE FRONT LEFT LEG.

Ki θi di ai αi

1 θ1 0 0 0
2 θ2 L1 π/2 0
3 θ3 0 L2 0
4 θ4 0 L3 0

Fig. 1. Coordinate system for a four-legged parallel mobile robot [15].

Using the D-H parameters in TABLE I, the following
transformation between the robot’s base frame and foot end
frame is derived:

R =

 s23 s23 0
−s1c23 s1s23 c1
c1c23 −c1s23 s1

 (1)

P =

Px

Py

Pz

 =

 L/2 + L2s2 − L3s23
W/2 + L1c1 + L2s1c2 − L3s1c23

L1s1 + L2c1c2 − L3c1c23

 (2)

where R is the rotation matrix, P is the translation vector,
L is the length and W is the width of the robot. s and c
abbreviate the sine and cosine trigonometric functions. Once
we have the direct kinematics for one leg, we can apply the
same transformation symmetrically for each leg. With known
joint angle domains (θi ∈ [θimin , θimax ]) the workspace of the
legs can be computed based on the direct kinematic relations,
see eq. (2).

III. GAIT GENERATION

A gait is defined as the timing and coordination of placing
and lifting each leg, synchronized with the body’s motion
across its six degrees of freedom, to propel the robot in the
desired direction [15].

A. Events and event sequence

An event is defined as the placement or lifting of one leg
[15]. A gait is possible with the implementation and timing
of these events. Multiple events in a sequence are called an
event sequence. For an n-legged robot, it can be defined with
an index in the sequence. The placement of the foot i is defined
as event i, while the lifting of the foot i is defined as event
i + n. In this way, a gait can be expressed as a sequence of
events where the number of unique indices in the sequence is
2n, e.g. 2− 4− 5− 7− 3− 1− 8− 6 [15]. The sequence can
also be expressed in graphs as seen in Fig. 2.

Fig. 2. (a) Top view of the robot; (b) Graph of event sequences [15].

Wave gaits provide a constant motion of the COG, while
discontinuous gaits do not.

There are six parameters that we can tune to optimize the
event sequence to our target:

1) Duty factor/cycle (βi): the fraction of the cycle for which
one leg is on the ground. If βi is equal for every leg we
can say that the gait is regular [15];

2) Phase (Φi): The normalized activity offset in time from
the reference leg (normally leg 1 is considered the
reference leg);

3) Stroke (R): The distance which a leg travels relative to
the body during the support phase;

4) Stroke pitch (P = (Px, Py, Pz)): The distance between
stroke centres of adjacent legs;

5) Stride length (λ): The distance travelled by the centre
of gravity (COG) of the body along a cycle. If the gait
is periodic, then

λ =
R

β
(3)

Using these parameters, we can define a +X type wave
(continuous) gait, assuming that the leg workspaces have no
overlap, i.e. R ≤ P , the leg offsets (Φi) are the following:

Φ1 = 0 Φ2 =
1

2
Φ3 = β Φ4 = F

(
β − 1

2

)
(4)

where F (X) returns the fractional part of |X|. In Fig. 3 an
example of such an event sequence is presented.

B. Stability analysis of gaits

During gait planning, we have to take into account the
stability of the robot. This is done with the help of stability
margins on the support polygon. The support polygon is
defined as the convex shape formed by the footprints of the
legs in the support phase [15].



Fig. 3. Event timings with reference leg 1.

A stability margin takes into account the centre of gravity
of the robot. If the support polygon changes and the COG
falls outside the support polygon, an undesired torque created
around the axis between the two footprints closest to the COG
can make the robot unstable. We have to make sure that the
COG always stays within the support polygon, or in cases
when the COG falls outside the support polygon, the robot
can catch and push itself back into a stable configuration [16].

Fig. 4. Different stability margins defined geometrically [15].

There are different ways to measure stability. One such
stability margin is called static stability margin (SSM ) which
is defined as the smallest of distances from the projection of
the centre of gravity to the edges of the support polygon.
However, the equation for calculating SSM can be quite
complex, so a different kind of stability margin was proposed
called longitudinal stability margin (SLSM ), which is defined
as the smallest of distances from the centre of gravity’s
projection to the front and rear edges of the support polygon
along the robot’s longitudinal axis (+X). The support polygon
can change between steps, stability margins take this fact into
account.

The longitudinal stability margin is calculated by the diag-
onal defined by two contralateral non-adjacent feet, shown in
Fig. 5. Using this information, we can calculate the longitudi-
nal stability margin for discontinuous gaits. This diagonal goes
from a foot in the middle of its workspace to a foot placed at
its kinematic limit closest to the centre of gravity of the robot.

Fig. 5. Support polygon changing between steps [15].

When leg 4 is in transfer, we can define SLSMd
as follows:

SLSMd
=

∣∣∣∣−y2

(
x3 − x2

y3 − y2

)
+ x2

∣∣∣∣ (5)

where (x2, y2) and (x3, y3) are the end points of the diagonal.
We can observe in Fig. 5 that the point coordinates are
the following: (−Px/2, Py/2) and (Px/2 − Rx/2,−Py/2).
Substituting these into eq. (5), yields:

SLSMd
=

Rx

4
. (6)

Fig. 6. Stability of wave and discontinuous gaits.

In 1968 McGhe and Frank [15] proved that the SLSM of a
continuous gait is given by:

SLSMc
=

(
β − 3

4

)
λ; 1 > β ≥ 3

4
. (7)

Substituting eq. (3) into eq. (7) yields the formula for contin-
uous longitudinal stability margin:

SLSMc
=

(
β − 3

4

)
Rx

β
;
3

4
≤ β ≤ 1. (8)

As you can see in Fig. 6, as the duty factor (β) goes above
0.75 the gait stays stable. However, if it reaches values below
0.75 the gait becomes unstable. In other words, if the foot
stays in contact with the support surface for longer periods of
time, the stability of the gait increases.



IV. GAIT PERIOD

A. Period of a discontinuous gait

While calculating the gait period we have to make the
assumption that the path is rectangular, this simplification
makes the calculation much easier. Consider the path in space
on Fig. 7. We segmented this path into three sections [15]:

1) [A,B] - leg lifting section (h height);
2) [B,C] - leg motion forward (Rx distance);
3) [C,D] - leg placement (h height).

Fig. 7. Foot path.

Since we know the distances for step height and stroke (h
and P = Rx respectively), we can calculate the gait period
as the function of two velocities (Vx velocity on the X-axis,
Vz velocity on the Z-axis). The period of a two-phase gait
consists of the time it takes to lift each leg, to propel the
leg forward and to place the foot down. With no overlapping
events in the event sequence (see Fig. 3), i.e. there is only
one leg in motion at any given time, we have to multiply this
number by the number of legs, four in this case. In addition,
we have to factor in the body propulsion time between each
sub-phase of the gait, which makes it possible to move the
body of the robot in the desired direction. This gives us the
following equation, see Fig. 7.

TD = 4(tL + tF + tP ) + 2tBP (9)

Substituting the height and leg strokes into eq. (9), we get:

TD = 4

(
h

Vz
+

Rx

Vx
+

h

Vz

)
+ 2

Rx

2Vx
= 8

h

Vz
+ 5

Rx

Vx
(10)

We have to note that the duty cycle does not affect the
period of discontinuous gaits.

B. Period of a continuous gait

Calculating the period for a continuous gait is very similar
to the discontinuous case. The path followed by the foot is
described in section IV-A. In a continuous gait, a leg is in
support for ts = βTC seconds and in transfer for tt = (1 −
β)TC seconds, where TC is the period of one cycle. Assuming
that the feet follow the same trajectory that discontinuous gaits
do, we can calculate the transfer leg time.

tt = 2
h

Vz
+

Rx

Vx
. (11)

therefore

TC =
1

1− β
tt =

1

1− β

(
2
h

Vz
+

Rx

Vx

)
. (12)

Notice that in contrast to discontinuous gaits, the duty factor
of the gait is proportional to the gait period, i.e. if β increases,
TC also increases and vice versa.

V. GAIT VELOCITY

We have already calculated the gait period for wave and
discontinuous gaits, we know the leg stroke (step length). This
information is enough to calculate the gait velocity with a few
assumptions:

1) The velocities along the X and Z axis are equal;
2) The step height is proportional to the workspace size

(Rx) and inversely proportional to parameter K which
weighs the step height (h = Rx/K).

We have to calculate the velocity for wave and discontinu-
ous gaits separately. In continuous gaits, we can describe the
velocity as

vc =
λ

TC
=

λ(1− β)VxVz

2hVx +RxVz
(13)

and in discontinuous gaits as

vd =
Rx

TD
=

RxVxVz

8hVx + 5RxVz
. (14)

Fig. 8. Wave and discontinuous gait velocities.

In Fig. 8 we can observe that the duty factor does not
influence the discontinuous gait velocity. However, in the case
of wave gaits the gait velocity is inversely proportional to
the duty factor. We can also notice that as the parameter
K approaches infinity, the surface given by eq. (14) flattens
around vdN

= 0.2m/s. On the line of intersection between
the two surfaces, we cannot differentiate between wave gait
velocities and discontinuous gait velocities.

If we want to achieve a normalized velocity around 0.2m/s,
where the surface for discontinuous gait velocity flattens, we
have to choose the β and K parameters in the blue region,
otherwise, we have to choose parameters in the red region
and implement a wave gait.

VI. PATH PLANNING FOR ONE LEG

It is important to note the difference between one leg’s path
and the path of the robot that it takes while walking. The
path must be inside the leg’s workspace. We can ensure that
the path stays inside the leg’s workspace by implementing a
rectangular path which can be described with 6 parameters.
These parameters are limited by the workspace.



• Start position: S = (Xs, Ys, Zn)
• Height of step: h = Zm

• Goal position: F = (Xg, Yg, Zn)

+x
Direction of motion

ROBOT

Support surface

x

y

z

Path

(xs, ys, zn)

(xs, ys, zm) (xg, yg, zm)

(xg, yg, zn)

Fig. 9. Path that the leg has to follow.

In Fig. 9 we can see the aforementioned rectangular path
that the leg has to follow. The motion of the robot is in
the +X direction (forward). We can clearly distinguish four
different points in space and we can interpolate between them
to calculate the intermediate points, this improves the path’s
resolution.

This presents a problem: we know the points the leg must
follow in space but not the joint angles needed to actuate the
motors. A solution to this problem is called inverse kinematics.
Inverse kinematics computes the joint angles for each leg to
achieve a target position in the body-frame coordinate system.
The calculation of the inverse kinematics can be a challenging
task. The classic solutions include geometric, iterative and al-
gebraic methods, but these can be computationally expensive if
the joint space and configuration of the robot itself are complex
[17]. An alternate solution to calculating the inverse kinematics
is proposed in this work using feed-forward artificial neural
networks, as it will be presented in section VII.

VII. INVERSE KINEMATICS SOLVER USING NEURAL
NETWORKS

As mentioned previously, the calculation of the inverse
kinematics is a computationally expensive problem if the joint
space and configuration of the robot are complex. In this case,
one leg consists of three revolute joints in series, so we have
to figure out three joint angles based on a target position, see
eq. (2). The solution for inverse kinematics can have multiple
results among which solutions might not be optimal.

An alternate method for computing the inverse kinematics
of a serial robot is the use of feed-forward artificial neural
networks. Remember that one leg of the robot can be thought
of as a serial robot with 3 degrees of freedom. The two
main network types used in robot model estimation are Radial
Basis Functions (RBF) and Multilayer Perceptrons (MLP).
Approximating a robot model using RBF neural networks
gives us greater accuracy than MLP neural networks. However,
the computation of the base functions is computationally
expensive. For this reason, the use of offline-trained MLP
neural networks is more convenient and straightforward.

The neural network was trained and implemented in MAT-
LAB using the Deep Learning Toolbox. The structure of the
feed-forward artificial neural network consists of one input
vector with n = 3 elements, q = 10 hidden layers and m = 3
outputs.

The input of the neural network is the position of the foot
in the body frame reference while the outputs are the joint
angles required to achieve the target position.

A. Generating training data

The first step to training a feed-forward neural network is
collecting the training data, this was done with three different
methods.

1) Method 1: We have generated three different sawtooth
signals for each joint with an evenly distributed randomized
phase offset in the interval [−π, π], with angular velocities 2π,
10π and 20π respectively, we added high-frequency sinusoids
and a randomized vector to avoid duplicate data points in the
set, see Fig. 10. Every generated angle was also mapped to
the interval [θimin , θimax ] which is the limit of the given joint.

Fig. 10. Generated points based on sawtooth signals.

2) Method 2: The joint angles were randomly generated
with an even distribution in the interval [θimin , θimax ]. This gives
us a more evenly distributed result.

3) Method 3: The foot positions were generated by cal-
culating all possible permutations of the joint angles with a
specified resolution.

B. Training the neural network

After generating the training data, we trained the neural
network with a training set the size of 100, 000 data points,
using the scaled conjugate gradient (SCG) method, with a
maximum epoch count of 2000 and 50 validation checks.
During training the data was randomly shuffled. The training,
validation and test ratio was 0.7, 0.15 and 0.15 respectively.
The training was conducted using an AMD Ryzen 9 5900HX
processor with 16GB of RAM. The mean performance met-
rics for the three training sets were 120.97s, 14.514s, and
132.327s, respectively. The performance analysis shows that



method 1, see VII-A1, amongst the two other methods, see
VII-A2, VII-A3, performs the best, see Fig. 11.

Fig. 11. Performance analysis.

C. Evaluating the neural network

The testing set was generated with the method mentioned in
section VII-A2. We can also cross-validate the results found
in VII-B. The testing set contained 2000 data points in total.

Fig. 12. Test target and neural-network output.

We can observe that the neural network output is close to
the target.

VIII. CONCLUSIONS

This paper introduces an intelligent control approach for
quadrupedal robots by combining an efficient periodic gait
method with a cost-effective inverse kinematics solver that
utilizes feed-forward artificial neural networks. Our approach
aims to reduce computational expenses while maintaining
high performance during robot control. The simulations and
calculations conducted have successfully met our expectations,
demonstrating results that are comparable to those achieved by
existing solutions.

Furthermore, we offer an in-depth analysis of locomotion,
addressing key aspects such as periodic gaits, stability, gait
period, and velocity. This comprehensive study not only
highlights the effectiveness of our proposed method but also
contributes valuable insights into the dynamics and control of
quadrupedal robots. Our findings underscore the potential of

artificial neural networks in enhancing robotic control systems,
paving the way for more efficient and accessible solutions in
the field.

To expand upon the findings of this research, we intend to
implement the proposed gait planning and control methods
in a physical system for experimental testing. The testing
will be performed using the aforementioned Dogzilla S1 [12]
quadruped mobile robot.
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