
Real-time Software System for Latin Dance Festival
Organizers and Participants

Nikolette-Beatrice Domokos∗, Szimma Hunor∗, Bertalan Vad§, Viven Bartha§, and Csaba Sulyok∗
∗ Faculty of Mathematics and Computer Science, Babes, -Bolyai University

RO-400084 Cluj-Napoca, Romania
§ Codespring

RO-400347 Cluj-Napoca, Romania
niki.domokos@yahoo.com; szimmahunor@gmail.com; vad.bertalan@codespring.ro; bartha.vivien@codespring.ro;

csaba.sulyok@ubbcluj.ro

Abstract—The “Wanna Dance?” project’s goal is to provide
an easier way to organize and manage dance festivals, while
participants may keep up with its happenings. As for its features,
organizers can introduce and maintain festival information, users
can view this data, track the events of the festival and to maintain
a connection with the other participants via open chat messages
and dance requests. The system is made up of a backend server
following the conventions of a microservices architecture, and
a cross-platform mobile application, available both for iOS and
Android devices.

Index Terms—dance, festival, real-time web, microservices,
timetable

I. INTRODUCTION

When dancing comes to mind, most people think
of professional dancers, sophisticated movements and
well-rehearsed choreographies. Many people do not even dare
to dance at an event, because they think it is embarrassing
if they do not do it professionally. However, dancing is not
primarily beneficial because of competition, but has many
other positive effects. Dance is, not coincidentally, also called
moving meditation [1]. Dancing lifts the spirit, frees the body
and harmonizes the soul, a perfect way if you want to relax and
have deep experiences. There are plenty of places to dance,
whether at local, smaller gatherings, weddings, nightclubs
or even at events and festivals revolving around dance.
Caribbean-style dances such as salsa, bachata, merengue,
kizomba, zouk and many different subspecies of these are
becoming more and more popular at dance festivals [2].

Such Latin dances are characterized by lightness,
playfulness and easy learning of the basics, so they are less
stricter and tighter than traditional folk dances [3]. They do
not require a pre-learned choreography in order for one to
be able to dance with anyone, as the figures are invented and
performed in an improvised way, meaning that the participants
can freely change their partners from song to song [5].
Therefore the Latin dance congresses are characterized by the
fact that you can not only have fun at the nightly social parties
but also improve your dance skills in the various workshops
held during the day.

Dance festivals of this kind are becoming more and more
popular due to their above-mentioned characteristics [6].

Nowadays, they attract thousands of people [4] who want to
be part of the experiences. In order to make it easier for the
dancers, to keep up with the festival and to be informed about
important information, and for the organizers to be able to
set them up efficiently, a full-scale software system would be
useful.

The Wanna Dance? project provides a solution for this
issue. On the one hand, it provides a mobile application where
organizers and staff can publish important information about
the festival, such as main dance styles, invited artists and
teachers, workshop and activities schedule and all kinds of
logistical information. Furthermore they can effectively notify
participants in real-time of any changes or delays that may
arise in the schedule. On the other hand, the app additionally
provides dancers a virtual real-time network as an extra
means to socialize and establish new relationships with other
participants. The app lets them ask each other for a dance,
generating real-time requests that can be accepted or rejected.
After acceptance, the parties have to find each other in the
realm of the festival to dance with each other. After their
dance they can confirm the dance they had in the system and
they also can leave a public review about the other dancer. To
further enhance their experience, they can use a global chat,
browse the festival information and other participants or get
notifications about delays in the schedule.

This paper presents the underlying software system, which
has as the backbone a microservice oriented architecture,
and as its presentational layer a cross-platform mobile app.
The backend server plays an important role in achieving the
performance needed for a real-time festival application and
the use of microservices increases the scalability and fault
tolerance of the application. The mobile app has a component
and state-based architecture that communicates with the server
through various protocols to offer a smooth user experience
and real-time presence in the social network.

II. ROLES AND FUNCTIONALITIES

A. Dancer

The dancer role is the default user role, which is assigned
to every newly registered account. As a dancer, the user will
be granted reading access to the main information regarding



Dancer

Browse events

Inspection of
 festival information

Browse rooms

Send message

Send dance request

Accept/refuse dance request

Browse previous dance requests

Change name

Delete account

Evaluate dance request

Fig. 1: Accessible functionalities with the dancer role

the festival, to track and filter the events taking place at
the aforementioned festival, to send public messages and to
address dance requests to other online users (see Fig. 1).

Information regarding the festival, such as its name,
description, starting and ending date, representative dance
styles and available rooms, are all available to view for the
dancer. Additional data of rooms and their events are also
accessible with ease.

For a better user experience, dancers can follow the various
programs of a festival through a timetable. The user can filter
the events by the day they are taking place at.

The application offers a public chat, which is accessible to
every logged-in user. Through this chat, users can socialize
with the other participants of the festival and be notified
of sudden schedule changes. Additionally, private dance
requests can be dispatched to other online users. In case
both dancers deem a successful request as concluded, they
get the opportunity to optionally leave an evaluation of their
experiences. These reviews then become publicly available to
other users, based on which they can decide whether they wish
to dance with them or not.

As for now, these dance requests can be accessed only by
the affiliated dancers.

B. Organizer

The organizer role possesses all of the functionalities that
the dancer has, with further possibilities and responsibilities.
Their main purpose is to manage the data stack of a festival.
This not only takes place in the preparation stage of said
festival, but during its active period as well. Currently,
an organizer can only modify the basic information of a
festival, such as its name, description, start and end date and
representative dance styles (see Fig. 2).

Besides these, an organizer can modify the core building
blocks of a festival. They can modify or delete already existing
ones or even create new ones. Events and rooms are such
building block entities. In the case of rooms, the user can
assign primary and secondary dance styles and even a specific
color, for the sake of differentiation. Upon the creation of
a new event, the organizer can choose its location, name,
duration, starting time and artist. A particular event can only
be tied to one room and during the creation or modification

Organizer

Add new room

Modify event

Delete room

Modify room

Modify festival information

Create new event

Delete event

Delete messageExtend a single event

Extend event
 waterfall styleExtend event waterfall style

Delete message

Delete room

Modify room

Add new room

Modify festival information

Delete event

Modify event

Fig. 2: Accessible functionalities with the organizer role

of an event, in the context of a room, event overlaps are not
permitted.

The organizer has two options at their disposal when it
comes to the extension of an event. The first option only has
a further effect on the subsequent event. This procedure is
appropriate in cases where it is certain that the event following
the one requiring more time, will be unavailable to utilize the
integrity of the duration at its disposal.

The second option does not only affect the first upcoming
event, but if needed every other event happening on that day.
This provides a solution to more serious and unpredictable
problems such as bad weather, power outages, or delayed
arrival of an artist.

In both cases, the organizer and dancer users will be
informed of these changes in real-time by the notifications
sent out in the public chat mentioned before.

III. ARCHITECTURE

This section discusses the architecture of the the server and
the mobile application.

A. Communication

Communication between the server and the mobile
application is based on three protocols: HTTP [7], WebSocket
[8] and STOMP [9].

• User management and authentication, retrieving
information about the festival and part of the process
of handling dance requests are managed through HTTP
calls. The client communicates with an API1 [10]
following the REST2 conventions, through which the
data is being transported in form of DTOs3 [11].

• The real-time chat is implemented using the WebSocket
communication protocol, which provides a permanent
two-way, real-time data transfer between the server and
the mobile application.

• Dance request notifications are sent out to users using
STOMP over WebSocket, which is a message-based
protocol.

1API - Application Programming Interface
2REST - Representational State Transfer
3DTO - Data Transfer Object



Mobile Frontend

HTTP

WS
Ingress

Transporter

Party

Festival

EventsArtists
Dance Users

Messaging

Auth

Database Cacher

Message Broker

STOMP

Rooms

REST API

Fig. 3: Architecture of the server application

B. Server

The core of the Wanna Dance? software system is a
server application based on a microservice architecture [12].
Designing such an architecture offers many advantages for a
festival application, such as scalability, resilience, improved
user experience.

In a microservice architecture, the integrated services are
independent from one another. This allows them to be
deployed and developed separately, making them easier to
manage. If one of these services malfunctions or shuts
down, the rest would remain unaffected and continue working
without issues, eliminating the possibility of a software level
shutdown. Furthermore, their segregation on such a level
allows a better scalability of the software, as individual
services can be horizontally scaled up, thus making this
architecture more resource and cost efficient. Based on load
tests, in case of the Festival service, five instances can satisfy
up to a thousand of simultaneous users with minimal timeout
occurrences.

In order for the application to support festivals, after a deep
domain analysis, the following entities were defined: festival,
room and event. Currently, only one festival can be organized
at once, but the server-side implementation also supports the
management of multiple festivals.

The Moleculer.js framework was used to build the server
application. The framework provides a database-specific
module through which the database can be accessed, and
also provides basic CRUD operations, such as Create,
Read, Update and Delete. This module is wrapped in a

Mixin that follows the [13] JavaScript pattern. This pattern
allows functionality to be reused between classes, multiple
functionality sets can be picked up from different mixins. With
regards to security concerns, the system performs business
logic checks. A dancer entity is made up of a username, a
name, a hashed password, a dancer role, a privilege level and
an activity status.

To make the system truly fault-tolerant, these services run
in a separate environments and the built-in transporter module
is responsible for the interservice communication.

C. Mobile

The presentation layer of the software system is the
mobile application, which communicates with the server
through the previously presented communication protocols.
The application is written in React Native [16]. Similarly to
React, it assembles the application from building block-like
components written in JavaScript [17].

Data related to the events and users are managed in global
stores within the application. For this, the unstated-next library
is used. Each larger entity has a corresponding state container,
in which, in addition to data, data manipulation methods are
also present. These containers are located at the top levels of
the DOM4 used by React Native, so that data can be easily
accessed in the child components.

The aforementioned methods included in these entities’
states mostly make API calls to the server. When using these
methods, the system first attempts to perform modification
operations on the server side, then the same corresponding
actions will occur in the local state as well.

The festival’s entire data stack is requested sequentially
from the server. First, the festival identifier and then its general
information are loaded in. Following that, with the festival’s
identifier its rooms and related events are also retrieved.

Certain graphical elements only become visible and
functional to users with the organizer role, for data safety
reasons. Most of these components have a navigational
scope, as they direct the user to views through which data
manipulating functions are accessible.

Another important global store to mention is the i18n5 state
container. For this purpose, the React Intl package is used,
which loads in the texts which correspond to the specified
locale and then formats them in the appropriate manner.

IV. MICROSERVICES

A. Applied patterns

The backbone of the system is built on a microservice
oriented architecture (MSOA) and the following patterns [14]
are applied in the system design:

• The API Gateway pattern assures that the system’s REST
Services have a joint entry point, through which they
share the JWT [15] based authorization and authentication
logic. Also, this Gateway service contains all the

4DOM - Document Object Model
5i18n - abbreviated form of internalization



App States

Room State Event State Party State

Festival State Stomp
State

Socket. IO
State

i18n

uses
uses

uses
uses uses

 UI Screen

React 
Components

Services

Api Client

Server

Mobile Application

User

sees and
uses

contains

invokes

depends on

invokes

invokes
communicates

communicates

communicates
WebSocket

STOMP over
WebSocket

REST

Fig. 4: Architecture of the mobile application

important web server settings, such as routing, CORS
policies, pre- and post-processors, etc.

• According to the Database per service pattern [14],
each service is responsible for maintaining the data
of a single entity, which is important in creating
well-isolated services. Relationships between entities are
also implemented at the level of services, which also
further serves the purpose of demarcation.

• The request-response based data exchange between
services complies with the Remote Process Invocation
pattern, further underlining the loosely coupled trait of
the system.

• There are use cases that require fire and forget type
of communication in the form of events, according to
the Asynchronous messaging. It applies when the notifier
service is not interested in the response of the notified
services.

V. REAL-TIME VIRTUAL PARTY

In the system, the Party service is the one that ensures
the real-time processing of the participants’ activities both on
and outside of the dance floor. It keeps count of the online
participants, who are also seeing each other’s availability
and are able to chat and ask each other for a dance. The
dance requests are processed by the Dance service, which also
verifies a certain set of adherent business rules regarding of
their status. These state changes can be best defined by a final
state machine (see Fig. 5). The final states of a dance request
are rejected, revoked and confirmed. The dance requests in
the first two states have to be archived by a cron6 job after a
certain time, but the ones in the confirmed state are kept since
the parties most likely will want to remember that dance.

VI. TOOLS AND TECHNOLOGIES

The used framework, Moleculer.js, is a modern, fast,
microservices-based framework for Node.js. It enables

6Cron Jobs allows to automate specific commands or scripts on a server to
complete repetitive tasks automatically.

Pending

Accepted

Rejected

Revoked

Confirmed

inviter invites
invitee to dance

invited dancer
accepts

invited dancer
rejects

inviter dancer
revokes

invited dancer
confirms

inviter dancer
confirms

both parties
confirmed

Fig. 5: A final state machine modeling the dance request
status changes

developers to create efficient, scalable and fault-tolerant
distributed systems. The framework supports multiple
communication protocols and provides built-in features
for load balancing, fault tolerance, and service registry7.
Moleculer.js enables developers to build microservice-based
applications easily and efficiently.

As for data management, each service has its own separate
collection, emphasizing its segregation. For this MongoDB
is used, which is a fast, document-based, NoSQL database,
which is easily scalable.

For caching purposes Redis, a high-performance database
based on key-value pair is integrated into the software,
allowing for quick data access and updates.

The mobile application is based on a platform-independent
framework called React Native. It offers components and APIs
through which JavaScript code gets transformed into native
platform-specific code, meaning the same code base can be
used for the development for both iOS and Android devices.

Additional external libraries were also used, such as React
Navigation, which is responsible for the navigation within the
application, React Native Elements, which provides uniform
components and other community libraries, through which

7allowing services to dynamically discover each other



Fig. 6: Public chat Fig. 7: Incoming dance
request

general-purpose components can be accessed (date selectors,
toast-type messages, etc.).

As it was stated previously in Section III-C, data
management on the mobile end is realized through the usage
of global states, created with the unstated-next library, which
is based on React Context.

For establishing the necessary channels for aforementioned
communication protocols the following dedicated libraries
were used: Axios, for HTTP calls, Socket.io for real-time,
two-way data transfer and communication and Stomp.js paired
with RabbitMQ for dance request notifications.

VII. USAGE OF THE APPLICATION

Upon the launch of the application, the user is greeted by
a login page. When creating a new account, the user must
select whether they are a leader or a follower in the context
of couple dances.

After successfully logging in, the Chat screen (see Fig. 6)
will appear, where the last fifty messages and notifications are
visible. By long touching on a selected message, the user can
choose to copy its content or in case of an organizer, can
delete it.

Using the navigation bar visible at the bottom of the screen,
users can navigate to the following screens: Dancers, Dances,
Event Info, Timetable, Me.

The Dancers screen contains a list of the other, participating
and logged in users. Through the elements of this list, users
can easily navigate to another user’s profile page, where they
can browse through the reviews left by other users and address
them a private dance request.

A dancer can view dance requests related to them on the
Dances screen, where they are classified into three categories:

Fig. 8: Festival Info screen Fig. 9: Incoming dance
request

Incoming, Outgoing, and Accepted. After accepting such a
request, both dancers can then confirm the conclusion of
their dance and optionally leave an evaluation based on their
experiences (see Fig. 7). In case both parties decide to leave a
review, those will become visible to every other user through
their profile pages.

Information regarding the festival can be found on the
Festival Info screen, where these are segregated into two
groups: one grouping the festival’s general information and
the other depicting the available rooms of the festival (see
Fig. 8). Tapping one of these room cards will navigate the
user to the room’s detailing screen.

As an organizer, on the two aforementioned screens, the
Festival Info and the room detailing Room Info screens, a small
pencil icon is visible on the top right corner, by which they can
navigate to the corresponding modification screens, where they
can alter existing information. Upon certain changes additional
data may also be modified indirectly, to which the application
draws the organizer’s attention.

During the modifications on the entities’ fields, continuous
validation is taking place. Partial entity update will only take
place if the new data is corresponding to the predetermined
constraints.

The events belonging to the previously mentioned rooms
can be viewed both on the room’s detailing screen and on
the Timetable screen (see Fig. 9). From a drop-down element,
right above the column of room cards, users can choose which
day’s events to be displayed. On the upper right hand corner, a
refresh icon can be found, which will reload the application’s
data stack, as described in Section III-C.

A vertical timetable style is also available for the users,
which can be accessed by tapping one of the room cards on



the Timetable screen.
Similarly to room cards, touching an event card navigates

the user to a detailing Event Info screen.
Akin to the previous screens, organizers have the option

to navigate to an event modification screen. In the case
of modifications that affect the duration of the event, the
application will notify the user of possible overlaps that may
occur. Creating an event itself works similarly. The screen
required for this can be accessed through the floating button
on the Timetable screen, which is only displayed in function
of the logged-in user’s role.

As an organizer, by long-pressing an event card, an overlay
appears, on which two options show up. One is used to delete,
while the other to extends the selected event. The extension
is performed through a floating panel. The user defines the
required additional duration using a slider, and then decides
the type of extension that should take place via a checkbox.

The default extensions prolong the duration of the selected
event and then moves the subsequent events, which could
overlap another one, to a later start time in a waterfall fashion,
until there are no more conflicts between the events assigned
to the room. The second option following the extension of the
selected event, will shift the start time of the following event
if an overlap occurs between them. This time, the end date
will remain unchanged, thus resulting in the reduction of its
duration.

The system notifies users of these event extensions in the
form of warning messages on the Chat screen (see Fig. 6).
Such a message provides a detailed description of the affected
event and the changes made to it.

Last but not least, on the Me screen, a user can view their
own profile, which is similar to a dancer’s profile, but contains
additional options. Here the user can change their name, log
out or, as a last resort, delete their account. Past dances can be
accessed here as well. Tapping on the gear icon on the upper
right hand corner, the Settings screen can be accessed, where
the user can select the application’s language and change the
server’s access URL. The latter is not available to real users.

VIII. CONCLUSIONS AND FURTHER DEVELOPMENT

The main objectives of the Wanna Dance? project have been
partially realized, as its social aid role and festival organization
and monitoring functions are functional.

The system provides the organizer with the opportunity to
provide general information about the festival, its rooms, and
its events, along with the possibility of efficiently managing
those. Furthermore, through the message board and private
dance requests new social relationships are easier to initiate
for the users.

Although the organization of only one festival is supported
currently, the project aims to extend this to managing several
festivals in parallel and to serve their participants. Due to the
architecture of the server, the extension of the more frequently
used services is easily manageable, thus providing steady
connectivity.

In addition to these, a website is also planned for DJs,
through which they can interact with their crowd. By
connecting the two systems, dancers would be able to provide
live feedback on the played music or even vote on what they
would like to dance to next.

As already mentioned, dancers can be informed in real-time
about the postponement of events through the message
board, these are however only internal notifications. With the
introduction of push notifications, it would be ensured that the
users are notified of these changes in time.

Currently, only text-based descriptions are used to describe
the festival, halls and events. These could be embellished
with pictures, thereby providing a more direct insight for
the dancers and even enhancing their mood. These pictures
would be stored in a cloud. With this additional storage, the
application’s security would also be extended to accommodate
the users’ privacy.

To ensure that only those users can send dance requests and
access the messaging boards that are physically present at the
ongoing festival, various checks could be integrated into the
application, such as verification through QR codes or location
tracking.

REFERENCES

[1] Christensen, J. F., & Chang, D. S. (2021). “Dancing is the Best
Medicine: The Science of How Moving to a Beat is Good for Body,
Brain, and Soul”. Greystone Books Ltd.

[2] Video interview - Cotiso, founder of the Bailarte “empire”: what are the
next steps of salsa, during the pandemic

[3] Senecal, S., Nijdam, N. A., Aristidou, A., & Magnenat-Thalmann, N.
(2020). “Salsa dance learning evaluation and motion analysis in gamified
virtual reality environment”. Multimedia Tools and Applications, 79,
24621-24643.

[4] Fonseca, M., Gonçalves, G., Leal, R., Biro, D., Silva, L., & Sá, R.
(2007). “Dancing for sustainability: Steps towards the sustainable design
of a dance festival”.

[5] Franks, A. (2021). “Social dance: a short history”. Routledge.
[6] Romano, G., Schneider, J., & Drachsler, H. (2019). “Dancing Salsa with

Machines—Filling the Gap of Dancing Learning Solutions”. Sensors,
19(17), 3661.

[7] Wong, Clinton. “HTTP Pocket Reference: Hypertext Transfer
Protocol.United States: O’Reilly Media”, 2009.

[8] Lombardi, A. (2015). “WebSocket: Lightweight Client-Server
Communications”. United States: O’Reilly Media.

[9] Mesnil, J. (2014). “Mobile and Web Messaging: Messaging Protocols
for Web and Mobile Devices”. United States: O’Reilly Media.

[10] Amundsen, M., Richardson, L., Ruby, S. (2013). “RESTful Web APIs:
Services for a Changing World”. United States: O’Reilly Media.

[11] Ezzio, D. (2003). “Using and Understanding Java Data Objects”.
Germany: Apress.

[12] McLarty, M., Amundsen, M., Nadareishvili, I., Mitra, R. (2016).
“Microservice Architecture: Aligning Principles, Practices, and Culture”.
United States: O’Reilly Media.

[13] Osmani, A. (2012). “Learning JavaScript Design Patterns: A JavaScript
and JQuery Developer’s Guide”. United States: O’Reilly Media.

[14] Richardson, C. (2018). “Microservices Patterns: With Examples in Java”.
United States: Manning.

[15] Rasyada, Naufal. “SHA-512 Algorithm on JSON Web Token for
RESTful Web Service-Based Authentication.” Journal of Applied Data
Sciences 3.1 (2022): 33-43.

[16] Masiello, E., & Friedmann, J. (2017). Mastering React Native. Packt
Publishing Ltd.

[17] Horváth, G., & Menyhárt, L. (2014). Teaching introductory
programming with JavaScript in higher education. In Proceedings
of the 9th International Conference on Applied Informatics (Vol. 1, pp.
339-350).


