
Home Thermostat for Smart Temperature Control
Dániel Bı́ró∗, Kristóf-Bálint Nagy∗, Mátyás Gagyi†, Norbert Nagy-Seres†, Ákos Zsebe†, and Csaba Sulyok∗

∗ Faculty of Mathematics and Computer Science, Babes, -Bolyai University
RO-400084 Cluj-Napoca, Romania

† Codespring
RO-400347 Cluj-Napoca, Romania

daniel.biro@stud.ubbcluj.ro; kristof.balint.nagy@stud.ubbcluj.ro; gagyi.matyas@codespring.ro;
nagy-seres.norbert@codespring.ro; zsebe.akos@codespring.ro; csaba.sulyok@ubbcluj.ro

Abstract—Traditional thermostats offer numerous
shortcomings because of limited automation options, relying
primarily on the time of day. If one does not get home at a
preset time, they may be greeted by a cold house and/or waste
energy on heating an empty house. The ThermoSmart project
aims to make it possible for users to control the temperature
of their home remotely. The architecture relies on a server that
receives temperature data from a Raspberry Pi 4 thermostat,
which is managed through a mobile application. The design of
the system adheres to the guiding principle of simplicity. It also
provides convenience features, such as a forecast which helps
users find an optimal combination of adequate temperature
and energy consumption. The thermostat operates with two
thermometers, one of which is located inside the house, with the
other outside. The data measured by these modules are used to
create statistics, which are also intended to provide a basis for
the user who desires to optimize the performance of his house.

Index Terms—thermostat, temperature, message queue,
WebSocket

I. INTRODUCTION

For the average person, being greeted by a cold home after
a cold winter’s day could be a problem. Some would opt for
a solution of setting the heating on their home thermostat
based on time (e.g. to turn on at 6PM) or reached temperature
(e.g. turn off when the house reaches 22◦C). This may be
appropriate with certainty around the time of getting home;
however this is not always the case.

Traditional thermostats, which can store what temperature
one wants at what time of day and then maintain it by turning
the heating on, have been in use since the 1950s [1]. It has
always been a problem that if one leaves their house for an
extended period of time and forgets to turn the heating off,
the thermostat will maintain the given temperature at the given
time(s) and waste energy in the process.

According to the U.S. Energy Information Administration,
85% of American homes have central heating, of which less
than half use a programmable thermostat. Chris Mooney of the
Washington Post [2] and Peffer et al. [3] speculate that using
thermostats is cumbersome and confusing. Mooney also talks
about how the thermostats in average homes are old and not
of the inhabitants’ choosing, but probably inherited, lacking
in terms of user interface or functionality.

The software system consists of three components: a mobile
application that provides a user interface, a server and a
Raspberry Pi 4 [4] which acts as a thermostat, monitors the

indoor and outdoor temperature, and switches the heating on
and off.

Related work

Several solutions are available in the market; however,
each of them presents certain limitations. For example, the
thermostat from POER Smart Controls1 does not have an
external thermometer, so it loses valuable information, and
it does not provide a weather forecast. The SMARTHER
thermostat from Biticino2 does not provide a good
ascending experience on top of the problems listed
above. The ThermoSmart project aims to solve these and
the aforementioned problems through a targeted mobile
application.

II. ARCHITECTURE

The project aims to save as much money as possible when
it comes to heating. This and a convenient user experience is
made possible by introducing three architectural elements: a
mobile app, a server and Raspberry Pi as a thermostat. The
central element is the server, which connects the user’s mobile
app to the home thermostat.

Users can create a new account using their Google account
alone, thus facilitating the registration process, after which
they must assign at least one thermostat to themselves. Linking
a thermostat to a user (or users) is possible via QR code3.
The home unit is equipped with a QR code that is used as a
unique identifier in the system. Users and thermostats are in a
many-to-many relationship, i.e. one user can manage multiple
thermostats and one thermostat can be managed by multiple
users.

The left side of Figure 1 shows the two target devices,
phones running Android and iOS, communicating with the
server through RESTful [5] HTTP and WebSocket [6] based
channels. The presence of two different channels is due to
the goal of presenting real-time data to users. The REST
connection is suitable for sending commands from the mobile
to the server, but not in the opposite direction, because
the phone does not have a public IP address. Using the

1https://www.poersmart.ro/
2https://www.bticino.com/products-catalogue/

smarther-the-connected-thermostat/
3Quick Response code–two dimensional machine-readable point code

https://www.poersmart.ro/
https://www.bticino.com/products-catalogue/smarther-the-connected-thermostat/
https://www.bticino.com/products-catalogue/smarther-the-connected-thermostat/


Fig. 1. System architecture

HTTP connection the mobile app can only be notified of
any temperature change if it explicitly requests it, which
results in continuous and largely redundant HTTP requests. To
solve this problem, WebSockets are used, which implement
bidirectional and delay-free communication (Socket.IO [7]
library). The technology is subscription based. Mobiles
subscribe to thermostats, meaning that they are interested in
the data from a given thermostat. A custom data structure
is used for maintaining the subscriptions of mobile apps to
thermostats (linked lists embedded in a hash table).

The mobile application is also equipped with a weather
forecast to help the user decide when to turn on the heating.
For example, if it is going to be 15 degrees during the night,
hence the house will cool down, but by morning it will be 22
degrees, it is not worth heating.

In the middle is the server, which manages a PostgreSQL
database. The server is connected to the OpenWeatherMap
API 4, for the reasons mentioned above, and to Google’s
OAuth [8], which is used to make Google login possible.

On the right is the Raspberry Pi 4, which communicates
with the server using REST and AMQP [9] protocols. There
are two channels, for a similar reason as between the server
and the mobile. The difference in terms of functionality is
that the thermostat receives the target temperature. The second
connection is again based on a protocol capable of back
and forth communication (AMQP), but unlike the mobile,
the Raspberry Pi runs a full Linux operating system [10],
which allows the use of more complex technologies. The
sending party (server) sends the message to the message broker
and the receiving party (thermostat) subscribes to the topic
specified by the sending party, thus receiving the message.
The communication between the two elements is solved via
the CloudAMQP 5 provider, using the RabbitMQ [9] protocol.

4https://openweathermap.org/api
5https://www.cloudamqp.com/

III. THE APPLICATION SERVER

The core element of the project is the server, which
establishes and maintains communication between the mobile
application and the thermostat. It is capable of processing and
handling incoming requests, and then sending a response back
to the requesting party.

A. Technologies

The server is written in TypeScript, using the Express.js
framework and the Node.js runtime environment [11].

Node.js is a JavaScript runtime environment based on
Google’s V8 engine. It is capable of asynchronous and
synchronous programming, even though it runs on one thread.
Being famous for creating web applications, web servers and
command-line utilities, the technology is used worldwide.
Using its built-in package manager, npm third-party packages
can be added to the project easily.

Other third-party packages are also used in this project.
These include the amqplib library that imports the AMQP
protocol, the Winston and Morgan loggers, the ESLint static
code analyzer, the Passport.js authentication middleware, the
Axios HTTP client and the nodemon code analyzer.

The persistent data is stored in a PostgreSQL database,
which is a popular choice for large scale web applications.
TypeORM6 is used in order to build the connection between
the server and the database and to perform the necessary
operations. An ORM (Object Relational Mapping) [12] is a
technology that creates a connection between object-oriented
programming languages and relational databases by generating
tables from model classes and by ensuring optimized
functions.

B. Architecture

The structure of the server consists of three main parts,
corresponding to the multi-layer architecture pattern [13].
These are the following: the API (Application Programming

6https://typeorm.io/

https://openweathermap.org/api
https://www.cloudamqp.com/


Interface) component, which handles the requests coming from
the mobile application, the domain component, which manages
the communication between the API layer and the data access
layer, and the persistence component, which is used to access
the database using the CRUD operations.

C. Application Programming Interface

This section is also divided into three different parts. The
dto package contains the DTOs (Data Transfer Objects); these
are used to map data incoming or outgoing with a request
into classes which can be later processed by the server. The
middleware package contains middlewares, functions that run
before accessing given endpoints. They are used to check for
user authentication. The route package contains the routers,
which divide each request by the path given inside them.
This package contains the functions that handle the access
to the predefined endpoints. Every function can handle one
type of HTTP request: GET, POST, PUT, DELETE. Apart
from the types mentioned above, a path must be specified,
and optionally query parameters can be added.

The project supports many main endpoints. The
/temperature endpoint is used to save the temperature
retrieved from the thermostat in the cache or in the database.
The /device endpoint is used to perform device-related
operations, such as registering a new thermostat, updating its
name and assigning a device to a specific user.

D. Domain

The domain section contains three main sub-packages. The
mapper functions that convert the entities of the data access
layer into data models that are returned to the API. These data
model classes can be found in the model package. The service
package contains the functions that sustain the connection
and the communication between the API and the persistence
packages.

E. Persistence

The persistence layer is made up of three elements. The first
package, db is responsible for creating the connection with the
database and initializing the cache. These functions are called
every startup or restart. The second package, entity consists
of the entities used by the ORM. The last package, repository
includes functions that communicate with the database.

F. Data model

The data model used in the database is as follows:
• The device table contains all the information about the

registered thermostats: their identifier, their name as well
as the preferred temperature according to the user’s
setting.

• The user table consists of data about the user, saving
information from their Google profile. It retrieves the
user’s full name, email and the URL of their profile
picture.

• The program table is made up of the user-set temperature
preference, broken down into intervals for each day of the

const strategyOptions:StrategyOptionsWithRequest={
clientID:
process.env.GOOGLE_CLIENT_ID as string,

clientSecret:
process.env.GOOGLE_CLIENT_SECRET as string,

callbackURL:
`${process.env.BASE_URL}/auth/google/callback`,

passReqToCallback: true,
};

Fig. 2. Configuration used to set up Google as the OAuth2.0 provider

week: the starting and the ending date, the set temperature
and the day the program starts.

• The user and device table indicates which thermostat is
paired to which user, doing so by saving each entity’s
identifier in the table.

G. Login

Since the login can only be done with a Google
profile, Passport.js is used to facilitate the process of
logging in. Google uses the OAuth2.0 protocol, so the
passport-google-oauth20 strategy is chosen to log
in. To use the middleware, it is necessary to register the
application in the Google Developers Console. A Client ID and
a Client Secret are then generated and these must be specified
when setting up the strategy; Figure 2 shows the setup options.

Before use, an Express.js session needs to be created,
Passport needs to be initialized and the Passport-specific
session function needs to be called. The latter logs in the
Express session using the Passport session strategy.

Due to the above, every time a login attempt is made, a
strategy called GoogleStrategy is ran, where three cases can
happen: successful login and the user already exists, successful
login but no such user exists in ThermoSmart yet and is
created in the database, or unsuccessful login. If the login is
successful, the done function is called, which tells the program
to jump to the next endpoint.

Two endpoints are required to log in, one to start the login
and one to redirect the user back to if the login is successful.
The user is then redirected to the mobile app again.

IV. MOBILE APPLICATION

The mobile app is the user interface from which one can
control the temperature of their home, get statistics and set the
position of their thermostat on the map, which is essential for
accurate weather forecasting, another feature of the app. You
can also set traditional programs, such as 21 degrees every
morning at 7 am. One can connect to a specific thermostat via
the mobile app.

Each function is specific for one thermostat. The system
is generalized to handle multiple thermostats. It is possible to
choose between the registered thermostats. When one switches
to another thermostat, the old data is replaced by the data
associated with the new thermostat.

The program is written in TypeScript using the React
Native [14] library. React’s Context API is used for data



management and distribution. An external library (React
Native Elements7) is used for design.

A. Login

On startup, the application checks whether there is any user
data already saved on the phone. If there are, it retrieves the
last used thermostat and displays the main page. If there are
none, it prompts the user to log in. The default login strategy
is via Google.

B. Communication

Two different technologies are used for communication:
simple HTTP calls and WebSockets (for further details see
Section II).

To simplify HTTP calls, the Axios library is used, with
which it is possible to globally set the server URL. The DTO
design pattern is used at all requests.

Secondly, the mobile app must show the home temperature
in real time. This could be done with continuous HTTP
requests, but there is a better way. WebSockets are capable
of real-time back and forth communication based on observer
pattern, so this technology is used in this project.

The Socket.IO library is used to create a channel upon
application start. The library ensures that any interruption
is automatically remedied at the first opportunity and no
data is lost in the process. This channel is used to receive
instantaneous data from the thermostat (e.g. outdoor, indoor
temperature, success of heating on/off).

C. Chart

One of the aims of the ThermoSmart project is to help
users to heat their homes optimally. One of the ways this is
done is by providing statistics on the relationship between
the temperature inside the house, the temperature outside the
house and the heating itself.

The server provides a large amount of data, as thermal
information is saved at small intervals (12 data/hour). The
graph can only plot a finite number of points to look
aesthetically pleasing, so the data is averaged out.

D. Map and weather forecast

The Google Maps service is integrated in order to determine
the position of the thermostat. This is used for obtaining
precise weather forecast. This information is meant to help
users make the best decisions when it comes to heating their
home.

V. THERMOSTAT

The thermostat is simulated using a Raspberry Pi 4
minicomputer. We chose this device because it supports
the sensors we use and is therefore an easier and cheaper
solution than a dedicated thermostat. We connected two
DHT22 [15] temperature and humidity sensors, one to monitor
the temperature outside the dwelling and the other to monitor
the temperature inside the dwelling. A relay is also connected

7https://reactnativeelements.com/

Fig. 3. Main screen

to the device which allows us to control the temperature.
Heaters can be turned on by bringing two cables (which come
out of them) into contact, which is the purpose of a relay.

Raspberry Pi is a computer the size of the palm of one’s
hand. It has its own processor, RAM and video card. However,
it has no back-up storage, which can be remedied by inserting
a micro SD card. One can run a full-fledged operating system
on it. The vendor recommends the proprietary Linux-based
Raspberry Pi OS, which is designed for this purpose.

The Raspberry Pi differs from classic computers in that
it has forty programmable pins. Throughout the project two
temperature and humidity sensors and a relay are connected
to the device.

The code running on the Raspberry Pi is written in
TypeScript and follows object-oriented principles like the rest
of the project. It communicates with the server via the REST
API, while the server sends data back to it via the RabbitMQ
cluster of the CloudAMQP provider. Its core is based on a
loop that runs over and over again at predefined intervals.
It performs two tasks. The first is to get the temperature and
humidity readings from the sensor and then send their average
to the server. The second is to turn the heating on or off
depending on the setting.

VI. USAGE

In order for the thermometers to provide real information,
both should be placed in a place protected from the sun, one
inside the house and the second outside.

Sign in via Google. The user needs a Google Account to
use the mobile app.

https://reactnativeelements.com/


After logging in, one is presented with a QR code reader.
The thermostat is provided with a QR code, which can be
scanned here to connect.

In the top bar (see Figure 3), on the left side, the Google
profile picture is shown. Pressing on the avatar brings up the
profile screen, which provides more information about the user
and where one can switch to dark mode for night use.

On the right is the name of the thermostat currently being
managed. The arrow next to it opens a list of all thermostats
connected to the user. Here, if one clicks on one of them,
the application will from now on control this thermostat and
display information from it.

In the middle is the ”monitor”, which shows live
information about the temperature. The outer ring represents
the inside (upper number in larger font) and the inner
ring represents the outside (lower number in smaller font)
temperature.

Below the ”monitor” on the left is the most important ”card”
to control the temperature. By long-tapping the buttons, one
can quickly make a big change, pressing them only once will
move the target temperature up or down by half a degree.

To the right of it is the status card. It indicates whether the
heating and cooling equipment is on. If they are, a coloured
circle appears in place of the grey ones.

Below it is the graph, which provides statistics for the past
day. The red line indicates when the heating is turned on.

Below the status card is the weather forecast for the next
24 hours which comes live from the internet and is linked to
the thermostat location.

It is possible to remove a thermostat from a user via the
mobile app. Also, one can change the name of the thermostat
which is global among users. Lastly, it is possible to set the
position of the thermostat using the integrated Google Maps
inside the app for precise weather forecast.

VII. CONCLUSION AND FUTURE DEVELOPMENT

There are several strands to the project that are planned to
be developed further and introduced in the future.

The most important option is the introduction of an artificial
intelligence that would design an optimal heating program
based on past (database) and future (weather forecast) heat
information. In this way, all the user would basically have to
do would be to tell the AI how many degrees they would like
and when, and the AI would do the rest. This would create
programs that humans would never think of.

Another option is to create an administration interface,
which would be a web page where thermostats could be
entered into the system, users could be deleted, and the system
could even be restarted in case of a failure.

Ultimately, increasing security is an important improvement,
as at the moment anyone with a QR code for a thermostat can
control it. This can be done by introducing a password.

REFERENCES

[1] Endesa, “Illustrated History of the Thermostat,” 2017.
[Online]. Available: https://www.endesa.com/en/blogs/endesa-s-blog/
air-conditioning/illustrated-history-of-the-thermostat

[2] C. Mooney, “Americans could save a fortune this winter — if
they only understood their thermostats,” 2014. [Online]. Available:
https://wapo.st/3WMXjEb

[3] T. Peffer, D. Perry, M. Pritoni, C. Aragon, and A. Meier, “Facilitating
energy savings with programmable thermostats: evaluation and
guidelines for the thermostat user interface,” Ergonomics, vol. 56, no. 3,
pp. 463–479, Sep. 2012.

[4] D. Denton, Raspberry Pi 4: A Comprehensive Guide to Raspberry Pi
4 Setup, Learning Programming and Developing Innovative Projects.
Independently Published, 2020.

[5] L. Richardson and S. Ruby, RESTful Web Services. O’Reilly Media,
2008.

[6] A. Lombardi, WebSocket: Lightweight Client-Server Communications.
O’Reilly Media, 2015.

[7] R. Rai, Socket. IO Real-Time Web Application Development, ser.
Community experience distilled. Packt Publishing, 2013.

[8] R. Boyd, Getting Started with OAuth 2.0. O’Reilly Media, Inc., 2012.
[9] A. Videla and J. Williams, RabbitMQ in Action: Distributed Messaging

for Everyone. Manning, 2012.
[10] W. Harrington, Learning Raspbian, ser. Community experience distilled.

Packt Publishing, 2015.
[11] D. Choi, Full-Stack React, TypeScript, and Node: Build cloud-ready

web applications using React 17 with Hooks and GraphQL. Packt
Publishing, 2020.

[12] K. Roebuck, Object-Relational Mapping: High-impact Strategies - What
You Need to Know. Emereo Pty Limited, 2011.

[13] M. Fowler, Patterns of Enterprise Application Architecture: Pattern
Enterpr Applica Arch, ser. Addison-Wesley Signature Series (Fowler).
Pearson Education, 2012.

[14] A. Paul and A. Nalwaya, React Native for Mobile Development:
Harness the Power of React Native to Create Stunning iOS and Android
Applications. Apress, 2019.

[15] “DHT22 technical specification.” [Online]. Available: https://www.
sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

https://www.endesa.com/en/blogs/endesa-s-blog/air-conditioning/illustrated-history-of-the-thermostat
https://www.endesa.com/en/blogs/endesa-s-blog/air-conditioning/illustrated-history-of-the-thermostat
https://wapo.st/3WMXjEb
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

	Introduction
	Architecture
	The Application Server
	Technologies
	Architecture
	Application Programming Interface
	Domain
	Persistence
	Data model
	Login

	Mobile Application
	Login
	Communication
	Chart
	Map and weather forecast

	Thermostat
	Usage
	Conclusion and Future Development
	References

