
Managing a Kubernetes Cluster on Raspberry Pi
Devices

Ferenc Füstös∗, Katalin Péter∗, Norbert-Péter László§, Szilárd-Gábor Mátis§, Zsolt Szabó§ and Csaba Sulyok∗
∗ Faculty of Mathematics and Computer Science, Babes, -Bolyai University

RO-400084 Cluj-Napoca, Romania
§ Softech SRL

RO-400458 Cluj-Napoca, Romania
ferenc.fustos@stud.ubbcluj.ro; katalin.peter1@stud.ubbcluj.ro; laszlo.norbert@codespring.ro; matis.szilard@codespring.ro;

szabo.zsolt@codespring.ro; csaba.sulyok@ubbcluj.ro

Abstract—This paper presents the step-by-step setup of
a scalable Kubernetes cluster consisting of Raspberry Pi
computers. This process is mostly automated with the help
of Ansible. The power of Kubernetes is shown through
two proof-of-concept applications: one is a stateless, easily
parallelizable single workload web service, while the other is
a microservice-oriented application which can demonstrate the
workload handling and scaling abilities of the system. The
previously mentioned data can be monitored using Grafana and
Prometheus.

Index Terms—Raspberry Pi; Kubernetes; K3s; Rancher;
Docker; Monitoring

I. INTRODUCTION

Kubernetes [1], [2] is an open-source system for
managing containerized applications. Containers provide
runtime isolation for a piece of software without the overhead
of a virtual machine. They are launched from image files,
which are packaged versions of an application together with
its dependencies and configuration.

A Kubernetes cluster is a set of nodes: a master node
and one or more worker nodes. Deploying an application
is equivalent to placing it under the supervision of the
cluster, which launches, manages and monitors its status. If a
breakdown or failure occurs either on the container or the node
level, the cluster can detect it and restart/move the affected
container(s), minimizing any downtime [3].

Kubernetes also supports different types of scaling,
including the ability to fine-tune the amount of resources
reserved for a container based on its traffic, as well as running
multiple replicas of it to spread out the workload as well as
provide redundancy. Monitoring capabilities are also provided
to track the behaviour and resource consumption of the nodes
and/or deployed services.

The Raspberry Kube project intends to explore the world
of container orchestration by building a Kubernetes cluster
using only Raspberry Pis–a contrast to the common approach
of deploying clusters on large on-premise servers or cloud
providers. The cluster is configured to handle enterprise-level
applications.

The current work also presents two proof of concept
applications deployed to the cluster to test its efficiency
and performance. The Mandelbrot Image Generator tackles

a simple parallelizable problem through a minimalistic
single-container web application, while the Movies project
mimics an enterprise-grade system by using a distributed,
thoroughly monitored microservice-oriented architecture.

The paper is structured as follows: Section II is an
introduction to the world of Kubernetes and Rancher, while
Section III is about the physical components and configuration
of the cluster. The deployed applications and their associated
monitoring tools are presented in Sections IV and V,
with Section VI listing conclusions and further development
potentials.

II. KUBERNETES AND RANCHER

Kubernetes, derived from the Greek word meaning
“helmsman” or “pilot”, is an open-source orchestration system
which automates the deployment, scaling and management
of containerized systems. Originally released by Google in
2014, it was later adopted by the Cloud Native Computing
Foundation [4].

Nowadays different companies can easily make their web
applications accessible using Kubernetes, regardless of them
having their own infrastructure or not. In either case,
the Kubernetes system provides a unified solution for the
deployment of applications.

Applications that are to be deployed to Kubernetes need
to be standardized, so any system can run them in the
exact same way. This process is called containerization.
A container means a software package, that contains all
necessary dependencies needed to run.

Originally, Kubernetes only supported Docker as a
containerization technology. Later it became possible to run
containers in it using Containerd and other programs, which
implement the Container Runtime Interface.

Kubernetes provides a RESTful1 HTTP API which can be
used by a developer to create, modify or delete resources.
This API is usually accessed using the kubectl command line
utility. As a result of the nature of the API, it can be used
through browser based user interfaces as well, like Kubernetes
dashboard or Rancher.

1Representational State Transfer



Kubernetes has multiple lightweight distributions, that allow
running a cluster on computationally weaker devices. These
include Microk8s, Minikube, and K3s.

K3s

K3s is a lightweight, production-ready Kubernetes
distribution. Some advantages of K3s are:

• straightforward installation process
• small executable file size
• support for multiple operating systems and CPU

architectures (e.g. amd64, arm64, armv7, etc.)
Thanks to the easy installation process and the wide variety

of supported platforms, a cluster, which is also usable for
testing purposes, can be set up in the span of a few minutes
on the computer of a developer.

K3s creates a pre-configured Kubernetes system during the
installation process. This process includes the installation of
Traefik as the ingress controller of the cluster.

Rancher

Rancher is a unified multi-cluster management system,
which facilitates the maintenance and management of multiple
Kubernetes clusters. It provides security and authorization
solutions.

One of the essential services of Rancher is its
web-based control interface, with whom Kubernetes system
administrators can register Kubernetes clusters and afterwards
configure them. A cluster can be registered after supplying
the respective information by deploying a resource file to
the managed Kubernetes cluster. After being registered, the
cluster becomes available through its generated id and the
corresponding HTTP endpoint. This approach completely
mirrors the API of Kubernetes, allowing the uniform
management of multiple clusters through the generated
endpoints. This is mostly useful for command line utilities,
such as kubectl.

User management and integration of external authentication
providers is another one of the functionalities that Rancher
provides. It can be integrated with a single external
authentication provider (e.g. Google OAuth, GitHub,
Microsoft Active Directory, OpenLDAP and others) and can
manage the permissions of individual users and groups. For
example, Rancher can be configured so members of a certain
GitHub organization can access the cluster, based on their
permission levels.

III. ASSEMBLING THE SYSTEM

This section contains the steps of setting up and configuring
the actual cluster, which is made out of 4 Raspberry Pis.

Physical components

The presented system is made of 4 Raspberry Pi 4 Model
B devices. Each of them boasts 8 GB of RAM, giving a total
of 32 GB RAM and 16 1.5 GHz processor cores. Some of
these resources are used by the operating systems and base
processes, leaving 30.5 GB manageable by Kubernetes. The

Fig. 1. The cluster in its powered on state

maximum power consumption of a Raspberry Pi is less than
15 Watts, bringing the total maximum consumption to at most
60 Watts.

Each Pi has a USB type-C charging cable and 64 GB
MicroSD card. The 4 Pis and their cooling system is held
together by a rack.

As the first step, the MicroSD cards are inserted into the
Pis with the help of extenders, which make it easier to access
the MicroSD cards without disassembling the rack. Each of
the Pis are afterwards attached to a transparent plane.

The next step is affixing the 4 Pis and the cooling fans to
the frame. The fan is plugged into the Pi on top (the master
node).

Finally, the charging cables are plugged in (as seen on
Figure 1). From this point on, the cluster is ready to be
configured.

Operating system

One of the cluster’s most important attributes is the
operating system (OS). The presented Raspberry Pi devices
are running the official Raspberry PI OS Lite 32 bit OS.
This is a non-graphical, open-source OS, which is a fork of
Debian Bullseye, called Raspbian, optimized for Raspberry Pi
computers.

The OS is installed onto the Pis using the Raspberry Pi
Imager program.

Network configuration

Each computer that makes up the cluster needs to have
internet access, since it has to download the Docker images
it will run. Communication between computers also happens
through the network.

The nodes are not connected directly to the public internet,
since this would open multiple possible venues of attack. The
Pis are plugged into a network switch instead, which assigns
a single public IP address to the master node. The other nodes
can access the public internet only through it. The firewall of
the switch allows network packets through certain predefined
ports (HTTP, HTTPS, SSH, Kubernetes API).



The Raspberry Pi designated as the master node creates a
virtual network with the 192.168.1.0/24 subnet mask, and each
Pi sets their IP address using static configuration:

master 192.168.1.200
worker1 192.168.1.201
worker2 192.168.1.202
worker3 192.168.1.203

This configuration makes the worker nodes available
through the master node via Secure Shell (SSH).

The domain name raspberryk3s.duckdns.org is
mapped to the public IP of the cluster by the free dynamic
DNS service DuckDNS [5]. Since this is a wildcard DNS
entry, all possible subdomains also point to the same address,
ensuring availability and convenient routing opportunities for
deployed applications.

The virtual cluster

The assembly of the virtual cluster consists in connecting
the other three nodes to the master. This can be achieved by the
use of tokens. Firstly, K3s must be installed to the master node,
after which the token can be retrieved from the k3s directory.
Afterwards, this can be supplied during the installation of K3s
on each of the remaining three devices, as seen in the following
code segment:

curl -sfL https://get.k3s.io |
K3S_TOKEN="{{token.stdout}}"
K3S_URL="https://master.raspberry:6443"
K3S_NODE_NAME="raspberrypi-{{inventory_hostname}}"
sh -

After running the command, the node will automatically
connect to the master. This can be verified via the kubectl
command line utility on the master node.

Ansible

As it is demonstrated above, manually assembling the
virtual cluster can be a monotonic procedure that consists of
connecting to the nodes of the cluster one by one and running
the installation command on each of them. The manual input
can be reduced by using Ansible.

Ansible [6] is an open-source automation engine,
designed for multi-tier deployments, enabling infrastructure
as code. Taking advantage of the relations between different
components, Ansible makes it possible to configure different
schemes by using YAML files as playbooks. This way, it can
be used for deploying applications and cloud provisioning too.
It can be easily installed on the Raspberry Pis by running the
following command:

sudo apt install ansible

The steps of assembling the virtual cluster can be listed
in the playbooks. These can be run on one or more hosts,
depending on the action. In the playbooks, every host is
referenced by its name. Hosts can be collected into groups
and referenced by group names.

The data required for connecting to the Raspberry Pis
is stored in a hosts file. This contains the IP addresses,
usernames and passwords (see section III for the introduced
safety measures) needed for connecting via SSH. An important
step is to disable strict host key checking:

ansible_ssh_extra_args=
'-o StrictHostKeyChecking=no'

SSH associates one key to every known host on default,
which can be a problem if the key changes along the way.
Associating new keys to the known hosts is possible by
disabling the strict check.

Moving on to the playbooks, assembling the cluster can
be divided into four steps (meaning four playbooks). Firstly,
each Pi needs to have a user that is able to run sudo commands
without needing a password. This being said, the first playbook
consists of creating these users, named kube on each node. The
second playbook initializes the IP addresses of the Pis. The
next step is to install Kubernetes on the master node and to
save the token. Lastly, Kubernetes is installed on the worker
nodes using the token.

This assembly can be further simplified if the run commands
of the playbooks are listed in a Makefile. Not only is the
running order set in stone this way, but the method allows
the password management to be implemented more effectively
too.

Passwords and security

Assembling the virtual cluster as described in the III
section is an effective, but a rather dangerous way to do so.
Hard-coding the password is an obvious security risk that is
better to be avoided.

Ansible has a built-in encryption tool, named Ansible
Vault, for this very reason. It is intended for encrypting
confidential information needed for running the playbooks.
These passwords can be stored in a structured file. Ansible
Vault can encrypt any kind of structured file that Ansible
is able to process. This way, variables, tasks and even full
playbooks can be encrypted.

In this case, the confidential information consists of the
passwords used when accessing the Pis through SSH. These
are collected in a file, named nodes-pass.yml, that is only
accessible by the group (for security reasons), meaning that
this is the file that someone, who wants to assemble the virtual
cluster, needs.

Encrypting the file includes a password that is later on used
to view:

ansible-vault view nodes-pass.yml

or to decrypt:
ansible-vault decrypt nodes-pass.yml

the file using Ansible Vault. Naturally, using the file also
requires the knowledge of this password.

Now the hard-coded passwords in playbooks can be
substituted with the names given to the password in the
nodes-pass file. This way, the Makefile described in Section III
also needs to be modified, otherwise one would have to
manually type in the previously given password before each
playbook starts. The most effective way to do this is to store
this password in a file (named password in this case) and use
that file when running the Makefile in the following way:

ansible-playbook -i hosts kube/kube-init.yml
--vault-password-file=password



Leaving the password in a file is another security risk,
which is why this file needs to be deleted after every run and
recreated only upon a future run. These steps can be added to
the Makefile, so it is enough to type in the password once and
then it takes care of the rest.

This way the encrypted file containing the passwords, and
its own password are the two things required to assemble the
virtual cluster. After inserting the nodes-pass.yml in the same
directory as the Makefile, running the make command and
typing in the password, the virtual cluster is assembled.

Deleting the cluster can also be implemented this way.
It consist of two playbooks (to uninstall Kubernetes on the
master and worker nodes). The Makefile can be expanded with
a clean section under which you can manage the Ansible
Vault password in a similar way to setting up the cluster.

Rancher configuration

The Rancher application used to help manage the cluster
is also physically deployed alongside it on the master node,
using a separate Docker container, behind a reverse proxy to
ensure HTTPS communication.

For easier user management, the use of GitHub external
users is enabled on Rancher. Members of the “raspberry-kube”
organization created on GitHub are able to log in to Rancher,
and members of the “raspberry-kube-admin” group within
this organization have cluster admin privileges–only they can
manage cluster-level resources such as persistent volumes.

Accessing nodes through the network

The easiest method of connecting to the nodes of the
Kubernetes cluster is through SSH. This is only required in
the case of maintenance or system configuration. This step
requires that the connecting party has a user created on the
master node and has their public key uploaded to their user.
Using SSH you can only connect to the computers in the
cluster if you have the private key, thus guaranteeing security.
After connecting to the Pi, we have access to the internal
network of the cluster and are able to connect to the other
nodes using SSH. For the internal SSH connections only
plaintext passwords need to be provided, ownership of private
keys is not required. This connection method was selected
because of convenience. It is not the best, but tolerable from
a security perspective, because it assumes that the user owns
a private key (needed for the initial connection).

There is another method as well, which uses Rancher to
handle the Kubernetes cluster running on the Raspberry Pis as
a local context. This way, local kubectl commands can be run
on the cluster.

As the first step, the Kubeconfig, downloadable from
Rancher, is put into the .kube directory (placed into the home
directory of the user during the installation of Kubernetes).
In order to make the certificate-authority-data recognizable,
the certificate must be downloaded from Rancher. In the
second step, we download and install the certificate of
Rancher as its Base64 encoded version. As the last step, the
certificate-authority-data field of the Kubeconfig file needs to

Fig. 2. Visual representation of the Mandelbrot set generated by the proof of
concept project

be replaced with the certificate-authority field and its value
needs to be the path of the installed certificate. In order to run
commands on the Kubernetes cluster, we need to select the
cluster as the current context:
kubectl config use-context kubernetes-cluster

IV. MANDELBROT IMAGE GENERATOR

The performance of the Kubernetes cluster built and
configured as described in Section III may initially be studied
by deploying small demonstrative workloads to it. In this
section one such application is discussed.

The Mandelbrot Image Generator is a single-container
stateless web application developed in Node.js, which aims
to compute the elements of the Mandelbrot set on the cluster
and display the results in a web browser.

The Mandelbrot set is a mathematical concept, defined as
the set of complex numbers for which the iteration of the
function fc(z) = z2 + c does not diverge, where c is the
complex number and z starts at 0.

The application includes a web-based user interface
containing input fields for calculation parameters, as well
as a canvas where the Mandelbrot set is plotted. The
parameters include the size of the desired mathematical
space, and the desired resolution of the elements. The most
important parameter is how many parts the system should
divide the mathematical space into–this directly impacts how
many requests are sent to the backend. Since this task is
unambiguously separable and parallelizable, it is well suited
for measuring cluster load baring and performance.

The backend calculates the proximity of each complex
number to the Mandelbrot set, returns this evaluation to the
frontend, which will display the visual representation.

The project uses a public subdomain reserved by
DuckDNS2. A generated visual representation of the
Mandelbrot set can be seen in Figure 2.

V. THE MOVIES PROJECT

The Movies project is a proof of concept meant to display
the capabilities and usability of the created infrastructure.
The application facilitates the sale of movie tickets, the

2http://mandelbrot.raspberryk3s.duckdns.org/



Fig. 3. The top-level architecture diagram of the Movies project

functionalities being separated into six different microservices.
These are altogether able to manage user data, reservations for
a specific movie at a pre-defined date and location, in addition
to handling payments.

Architecture

The project is based on a microservice-oriented [7]
architecture, meaning that it is divided into independent
components that communicate with each other through
well-defined protocols, usually HTTP REST APIs (see
Figure 3).

This approach has numerous advantages, e.g. the
microservices can be modified without having to update
any of the others, meaning that in the case of a failure,
downtime can be limited to the smallest possible fraction
of the systemAnother advantage is scalability: since each
microservice is deployed in its own container, resource
requirements and replica counts may be independently
assigned to them based on their load.

The microservices each have their own isolated data source,
where they can persist relevant data and maintain a consistent
state. They therefore conform to the design pattern “database
per service” [7].

Technology

The primary reason driving the choice of technologies is
their compatibility with microservice-oriented architectures.
These include the Java programming language, Gradle
as the build tool, as well as the Spring framework
and its automatic configuration for bootstrapping a web
application/API. The microservices in the Movies project
follow the Controller-Service-Repository [8] pattern often used
together with the mentioned technology stack. MongoDB,
a document-based NoSQL database, is chosen for data
persistence, since strict schema and relations are outside the
focus of the project.

Deployment to the cluster is done via GitLab CI/CD
(continuous integration/continuous development) pipelines

reacting to version control changes. Upon detecting new
commits, the CI jobs use Gradle to compile the code, and
the Docker Buildx utility to package the resulting JAR files
into a multi-architecture Docker image. The created images
are then rolled out to the cluster, ensuring the changes are
integrated into the deployments if they already exist.

Monitoring

One of the drawbacks of microservices is the difficulty of
monitoring: the many involved containers all have isolated
file systems and output streams, and although crashed pods
are restarted automatically, their logs and resource usage
information from before the incident may be lost, hindering
worthwhile debugging. A common response to this issue is to
deploy one or more auxiliary services to the cluster, whose
responsibility lies in aggregating, storing and visualizing
such metric data. Besides observing the behavior of the
application(s) during runtime, such tools are also useful for
demonstrating the capabilities of the created environment.

The monitoring stack deployed to aid the Raspberry Kube
project consists of the open-source tools Prometheus and
Grafana [9]. The former is a web application for general data
aggregation and storage, while the latter is suitable for visually
displaying the gathered data. The behavior of the application
can be tracked simply using Grafana Dashboards to display
the data, even down to the pod level.

In order for Prometheus to collect metrics data, it is
necessary to configure how each microservice provides it.
The configuration consists of defining counters for events
(e.g. GET or POST request received) with unique names and
optional tags. The data, using these two properties, can be
visualized on Grafana Dashboards in the shape of tables,
counters, flowcharts, etc (as seen on Figure 4).

VI. CONCLUSIONS AND FURTHER DEVELOPMENT

This paper describes the steps for creating and configuring
a monitored Kubernetes cluster with only Raspberry Pi
computers. The main goal of the project is to explore the
world of the scalable and redundant containerized systems in
a miniature environment.

The usability of the created infrastructure is demonstrated
by two deployed proof of concept applications. The
single-container Mandelbrot Image Generator allows robust
stress testing through a simple web interface. The more
complex, microservice-oriented Movies application is closer
to an enterprise-grade system due to its redundancy and
monitoring through tools such as Prometheus and Grafana.

There are several opportunities to improve the functionality
of the created infrastructure. One of the further development
opportunities is to make the container deployment process
faster and more confident with Spinnaker continuous delivery
platform. For code quality control a SonarQube instance can
be deployed to the cluster. Another development opportunity
is to test the performance and behaviour of the cluster
with event-driven applications. In addition to these, another
enhancement can be done at the cluster level by deploying



Fig. 4. Grafana Dashboards created for the Movies project. The upper image
shows the reservations created by screenings, while the lower one shows two
different Dashboards: the first one is for monitoring reservations by pods, and
the second one is a counter for registered users.

cert-manager to the cluster to manage SSL certificates
automatically. Doing so ensures secure data transfer via usage
of the HTTPS protocol when communicating with applications
deployed to the cluster.

REFERENCES

[1] H. Saito, H. Lee, and C. Wu, DevOps with Kubernetes: Accelerating
software delivery with container orchestrators. Packt Publishing, 2017.

[2] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running: Dive
into the Future of Infrastructure. O’Reilly Media, 2017.

[3] J. Arundel and J. Domingus, Cloud Native DevOps with Kubernetes:
Building, Deploying, and Scaling Modern Applications in the Cloud.
O’Reilly Media, 2019.

[4] The Linux Foundation, “Cloud Native Computing Foundation Announces
Kubernetes as First Graduated Project,” 2018. [Online]. Available:
https://bit.ly/3t8YekG

[5] D. Gupta, “Duck DNS, the best free dynamic DNS service you can
use,” 2022. [Online]. Available: https://bit.ly/3t73EfL

[6] J. Freeman and J. Keating, Mastering Ansible: Automate configuration
management and overcome deployment challenges with Ansible. Packt
Publishing, 2021.

[7] C. Richardson, Microservices Patterns with examples in Java. Manning
Publications, 2019.

[8] M. Fowler, Patterns of Enterprise Application Architecture. Pearson
Education, 2003.

[9] J. Bastos and P. Araújo, Hands-On Infrastructure Monitoring with
Prometheus: Implement and scale queries, dashboards, and alerting
across machines and containers. Packt Publishing, 2019.


