
Cloud-based Serverless Solution for Facilitating the
Organisation of Athletics Competitions

Tifani Franciska Nagy
Babes-Bolyai University
Cluj-Napoca, Romania

nagytf@gmail.com

Károly Simon
Babes-Bolyai University
Cluj-Napoca, Romania

simon.karoly@codespring.ro

Zsolt Csibi
Babes-Bolyai University
Cluj-Napoca, Romania
zsolcsib@gmail.com

Hunor Hegedüs
Codespring

Cluj-Napoca, Romania
hegedus.hunor@codespring.ro

Borbála Jánosi
Babes-Bolyai University
Cluj-Napoca, Romania

janosi.borbala@gmail.com

Erika Szász
Codespring

Cluj-Napoca, Romania
szasz.erika@codespring.ro

Abstract—The Athletimeter project was inspired by the annu-
ally held Béla Török Memorial athletics competition in Odorheiu
Secuiesc, Romania, which brings together children from the
surrounding areas to compete. So far, the organizers have not
used any digital solution to maintain the data related to the
competition. It was managed on paper, which did not provide
the necessary transparency and secure maintenance for the
organizers, and there was no opportunity for the spectators to
follow the results.

Therefore, the authors’ aim was to develop a cloud-based
system that could facilitate the data management needed to run
an athletics competition by digitizing the process. The system
provides a web and a mobile interface to its users, and is based
on a cloud-based server that introduces the concept of serverless
architecture. The server is only accessible during the competition,
so the amount spent on resources is significantly reduced.

Through the web interface, organizers can manage age groups,
contestants, events, and results. In addition, the platform allows
spectators to track the results of the different events in real-time.

The mobile application provides an efficient alternative for
recording results and identifying contestants. It is equipped with
a built-in stopwatch to record the results of time-based events
and a QR code reader that can associate a competitor with a
result by scanning the code on the jersey.

The paper aims to present the system, detailing its function-
alities, architecture, and different components, as well as the
technologies and tools used.

I. INTRODUCTION

The Béla Török Memorial athletics competition is held
annually in Odorheiu Secuiesc, Romania, where children from
different localities compete against each other. Competitors
take part in different events according to age group. The
athlete’s running time or distance in jumping or throwing is
measured by the assigned organizer and recorded on a piece
of paper. It is then the participant’s responsibility to go to
the appropriate desk and show the organizer, who summarizes
the results on paper. After all the events have taken place,
the completed tables are distributed to the representatives
responsible for the children. This method makes it difficult
for the organizers to manage and archive the data and for

spectators to keep track of the results, which can lead to a
significant number of human errors during the organization.

The Athletimeter software system was inspired by this
competition and aims to facilitate the work of the organizers
by digitally processing the data. The application can be divided
into three components: a web interface for displaying and
managing data, a mobile application for quick recording of
results, and a cloud-based server that is available for the
duration of the competition and is responsible for serving data
to these platforms.

The organizers can manage the data via the web application.
For the long-term preservation of the information, the plat-
form provides the possibility to save the records in different
formats, which can be later transmitted by the organizers to
generate different statistics. As the server is deployed before
the competition, organizers can quickly add data from previous
competitions by uploading datasets in the proper format. The
web application allows spectators to follow the results in real
time, which can even be projected at the place of competition.

The mobile application contributes to the efficient recording
of the results. This is equipped with a QR code reader,
allowing organizers to identify the competitor by scanning the
code on the clothing. A built-in stopwatch can be used for
timed events. After the timer was stopped and the contestant
was identified, the result is automatically saved.

Similar software systems already exist on the market to
facilitate the organisation of athletics competitions, such as
Orgsu1 or Athletics.app2, which in addition to data manage-
ment, allow the advertising of different sporting events and
the registration of athletes. Contrary to these solutions, the
Athletimeter project is purely an administrative tool, which
aims to facilitate the work of organizers, and thus it is
sufficient for the software to be available only during the
competition. The serverless technology greatly contributes to

1https://www.orgsu.com (accessed Aug. 3, 2022)
2https://www.athletics.app (accessed Aug. 3, 2022)



cost efficiency and allows the quick and easy automated
deployment and removal of the resources, while the export
to different formats ensures data preservation. The mentioned
softwares also include a mobile application, for recording
results in the case of Athletics.app and timing in the case
of Orgsu. On the other hand, the Athletimeter application
combines the mentioned functionalities with the possibility of
quick identification of the athletes.

The paper is divided into 5 main sections: Section II.
describes the user roles defined within the application and the
associated functionalities. Section III. provides an overview of
the communication model and discusses the different compo-
nents of the architecture. Section IV. describes the technolo-
gies and tools used, and the last section draws conclusions and
lists some possibilities for further development.

II. ROLES AND FUNCTIONALITIES

The Athletimeter software system provides two user inter-
faces: a web application and a mobile application.

The features of the web application can be separated
according to three user roles: guest users, organizers, and
administrators. In the case of the mobile application, these
are only available to registered users who act as organizers.

This section presents the main functionalities of the system
based on the previously mentioned roles.

1) Guest user: The users who are not registered or logged
in, are considered to be guests. Guest users are not
able to use the mobile application, and the accessibility
is limited in the web application as well, as only the
homepage and the information page can be accessed.
On the latter, guests can receive real-time information
on the progress of the competition.

2) Organizer: The organizers are registered to the system
by an administrator. After login, organizers can manage
events, contestants, results, and age groups on the web
application. On the pages dedicated to adding objects,
besides filling out a form, the data can also be imported
from previously saved JSON files. In addition, the saved
contestants, events, and results can be exported for
archival purposes to JSON and PDF format. The profile
page is also accessible on the web application, where
organizers can view and update profile information.
On the mobile interface, the organizers’ toolbox is
extended with a built-in stopwatch as an alternative to
adding results in timed events, and a built-in QR code
reader for contestant identification.
Multilingual support is available for both clients, cur-
rently supporting English and Hungarian.

3) Administrator: Besides the functionalities mentioned
above, the administrator has also access to a web in-
terface for managing the organizers of the competition.

III. ARCHITECTURE

The Athletimeter software system provides the digital man-
agement of an athletics competition’s data via a website and
a mobile application connected to a cloud-based server.

The web client provides an easy-to-use platform for manag-
ing and viewing the data provided by the server (see Fig. 1).
The web page is implemented using the React.js component-
based JavaScript technology.

The mobile application developed in React Native com-
municates with the server and hosts a user interface for the
organizers to provide easy data entry (see Fig. 4 and 5).

The server composed of five Azure function applications
implemented in .NET Core is connected to the Azure SQL
cloud database using services provided by the Entity Frame-
work Core. The management of the data types defined in
the system and the login are handled by separate function
applications, which operate independently and receive requests
through different URLs. Each function application provides a
RESTful API to communicate with the clients.

The real-time delivery of new results to the web interface
is implemented using the Pusher Channels API. When a
result creation, deletion, or update operation is performed, the
function application of the results publishes the information to
the channel as a properly named event. If the web application
is connected to the same channel, it can receive these events
without performing a data request for synchronization.

Figure 2. shows the communication and architectural com-
ponents of the software system, which are further detailed in
the following subsections.

A. Server

1) Structure: The server can be divided into two main
parts. The application part contains the function applications,
as well as a Main module, which provides the data access
layer and the classes implementing business logic and other
data configurations. These are broken down into separate
submodules, between which the dependency relationship is
shown in Figure 3. The configuration part contains pre-written
scripts for database creation and configuration.

Within the software system, five separate entities are de-
fined: contestant, organizer, result, event, and age group. In
the Functions component, there is a separate Azure function
application responsible for the first four entities and the login,
which contains the operations that manage the data for that
entity and the authentication. There is no separate function
application defined for age group management, as this can be
performed through the functions related to organizers, events,
and contestants. Each of the function applications runs parallel
on separate ports and executes the tasks independently.

The Models module encompasses the representation of each
entity and a factory class that configures the database and
returns the objects representing the database tables. To increase
security and minimize the amount of data to be sent, the DTOs
module contains DTO (Data Transfer Object) classes defining
different representations of the models. The conversion from
model to DTO, and vice versa, is done by a mapper. The
classes of the Repository layer follow the DAO design pattern
and are responsible for implementing the CRUD (Create,
Read, Update, Delete) operations related to the entities, us-
ing abstraction at two levels, thus increasing generality and



Fig. 1. The contestant listing page on the web application interface.

Fig. 2. The architecture of the Athletimeter software system.

reusability. The retrieved information can be sorted and filtered
according to different criteria. The Filters module contains
separate filter classes for each entity. The Validations layer’s
classes are responsible for validating the objects received from
the client platforms. The Utils component consists of not
entity-specific functions, such as password hashing, JWT token
generation, Pusher configuration, etc.

2) Security: As mentioned previously, the HTTP requests
received from the client applications are served by the API
server corresponding to the entity. The login operation is han-
dled by a separate function application, which after receiving
the authentication data, generates a JSON Web Token (JWT)
for the user. The token includes the username, id, and role in
the form of encrypted key-value pairs and is stored on the
client side. For each request, the HTTP header will contain
the generated token. If the user does not have permission to
access a functionality, a proper HTTP status and message are

Fig. 3. The structure of the backend part of the application, the relationships
between the components.

sent according to the REST API conventions.
3) Serverless technology: As different types of data are

typically handled during different phases of an athletics com-
petition, the separation of the Azure function applications by
entities provides a cost-effective solution, with no unnecessary
resource reservation, as a function application is only active
when it receives requests. In addition, efficiency is greatly
enhanced by the rapid deployment of the system before the
competition, as functions can be easily deployed and no other
maintenance operations are required, as the resources are
managed and scaled on demand by the cloud provider.

The REST API interfaces implemented by function appli-
cations are based on the use of HTTP triggers, which trigger
the execution of functions when HTTP requests are received.
Functions within an application have a unique name specified



Fig. 4. (a) Homepage Fig. 5. (b) Add result page

as an attribute parameter of the FunctionName method. In ad-
dition, the parameter list also includes an HttpTrigger attribute,
which indicates the type of triggering event and specifies the
authentication level required to run the functions, the list of
HTTP methods, and the route template that controls URLs.
The data available during execution is represented by the
functions’ input parameters: the HttpRequest type parameter
provides access to information related to the request, while the
ILogger object is used to log operations. The output parameter
is an object of type IActionResult, which encapsulates HTTP
responses with different status codes and contents.

The deployed function applications are located within a
shared resource group. Each is associated with an app service
plan, which defines the needed computational resources, a
storage account used by the provider to store temporary ob-
jects created during the execution, and an application insights
service, which contributes to the monitoring of the functions.

B. Web

1) Structure: The structure of the website can be divided
into several components. The components layer includes the
page header, the navigation menu, and other elements that
are used by the components defined in the pages. The pages
module contains the main container for the frontend. The
views displayed by the main are in separate submodules
consisting of pages responsible for CRUD operations, and
the information page. The service library contains service
methods responsible for the communication with the server.
The config package contains predefined constants and paths
used by the components and the fetch methods, as well as the
files implementing the internationalization. The assets module
contains the style settings for the web interface, and a separate
icons module contains the images and icons of the platform.

2) Architecture: Based on the communication model de-
scribed at the beginning of this section, the website commu-
nicates with the server via RESTful APIs. While the server is
only responsible for data handling, the clients update the page

based on the information received and the events triggered
on the user interface. Thus the application has a rich client
architecture since the operations of the display and control
components are defined based on the MVC (Model-View-
Controller) pattern and implemented on the browser side.

The web client’s MainContainer component displays the
corresponding pages elements based on the option selected
on the sidebar. Thus, the web client consists of a single page,
and it can be considered a Single-Page Application (SPA).
As Figure 6. shows, there is no full page reload, the browser
requests the HTML file that provides the single page of the
application, as well as the associated static files and images,
only on the first load, then it updates only those components
of the page where it detects a change.

Fig. 6. Illustration of SPA.

3) Communication with the server: The communication
between the client and server is implemented using Fetch API,
which allows the resources to be fetched asynchronously. The
API provides the generic Request, Response objects and the
global fetch method to access the server-side REST API. The
first parameter of the fetch method is a URL and the second is
a JSON object containing the request header, type, and request
body. In response, a JSON object is returned.

4) Components: The elements of the components and
pages module are implemented in .jsx files. This extension
provides the possibility to include both HTML and JavaScript
code in the same file to describe a React component. However,
browsers are not able to process this format, so React uses a
compiler called Babel to convert .jsx files into JavaScript code.
In the background, the compiler replaces the HTML code by
passing the information defining the element as a parameter
to the React.createElement function.

Elements are defined as function components, which are
JavaScript functions that return React elements. Contrary to
class components, functions do not have a state object whose
modification causes the component to re-render. In this case,
the state management is implemented using hooks.

5) Live update: The channel provided by the Pusher
Channels API allows the website to receive real-time noti-



fications related to the results. The add, update and delete
operations are indicated by the function application related to
results in the form of named events. The client-side retrieves
the new information via the bind method of the channel, whose
parameters are the event name and a callback function, within
which the update of the list based on the event is executed.

When the list of the results is updated, a reordering ani-
mation is displayed on the interface, whose implementation
is based on the FLIP (First-Last-Invert-Play) list reordering
animation principle. The first step consists of determining
the current position of the result card components. After
receiving new information from the channel and updating the
list correspondingly, the positions of the card components
may change, thus in the second step, the new coordinates are
determined using the getBoundingClientRect method provided
by JavaScript. After this, to ensure the animation, the inverse
of the calculated offsets is applied, so that the browser is
prevented from automatically changing position and the ele-
ments appear to remain in the original place. The function
requestAnimationFrame is executed immediately before the
redraw, and in the last step, the method given as a parameter
to it sets an appropriate transition, which affects the motion
of the position change on the interface.

6) Security: After successful authentication, the website
receives the JWT token generated by the server, and stores it
in a browser cookie, which is set and retrieved by the hooks
provided by the react-cookie npm package. The hooks also
allow the specification of keys used to defend against security
vulnerabilities. The web client provides the SameSite key with
the value ’Strict’, which protects against CSRF attacks by
preventing the transmission of a cookie in case of a request
from another site. Furthermore, the Secure key is set to true
so that the cookie is only sent if the request is directed to
an HTTPS page. The application updates the options of the
sidebar menu based on the token value and the role of the
user. When a page is accessed, the system checks the content
of the browser cookie, and if the user does not have the proper
permissions, the application displays the login page instead.

C. Mobile

1) Structure: The layered structure of the mobile appli-
cation is very similar to that of the web application. The
function components in the components folder contain the
pages to be displayed. Similar to the web application, the
services module communicates with the server through the
fetch method provided by the Fetch API. The constants in
the config folder are used to specify the IP address to access
the Azure functions stored in the cloud. Internationalization
is implemented in a separate file, and each language has a
dedicated json file in the locales subfolder, which contains
the application’s textual content in the respective language.

2) Navigation: Navigation between pages is provided by
the React Navigation community package. In the App.js file,
the application code is wrapped in a NavigationContainer
component. The initial path is configured as a property of a
Drawer.Navigator component and all the other required paths

are properties of different Drawer.Screen elements. The pages
visited are placed in a stack, which initially contains only the
path to the default one. Navigating through pages, after each
call to navigation.navigate(’route’), the new path is added
to the top of the stack. This makes it easy to implement
navigation for back operations.

3) Security: Similar to the method mentioned in the section
III-B6., the application sends the authentication data to the
server, and receives an object containing a generated JWT
token. However, contrary to web authentication, on the mobile
side, the token is stored in the SecureStore.

IV. TOOLS AND TECHNOLOGIES

A. Server technologies and tools

The application server is developed using ASP.NET Core
[1] which is a fast, cross-platform, secure framework that pro-
vides the possibility to develop a reliable cloud-based server.
Another advantage of .NET Core is the seamless integration
with Microsoft products. The code is written in C# with the
help of Visual Studio Code. The NuGet package manager is
entrusted to manage the .Net Core package dependencies in
the project.

The server is based on Azure Functions, which is a
serverless computing service offered by the Microsoft Azure
platform that allows event-driven execution of application
code, providing the required infrastructure. The necessary
resources and all changes, settings, and incoming requests,
can be viewed and easily managed on the Azure Portal.

The system’s Azure SQL database and Azure Func-
tions [2] communicate using Entity Framework Core, a
lightweight and open-source object-relational mapping (ORM)
system, which allows mapping an object model to a relational
schema. The data is stored in records in the database, and each
record is assigned to a .NET Core object, through which the
database operations are performed.

Fig. 7. Diagram of how the application server deploys and deletes scripts
work.

The implementation of the PDF export is based on the
DinkToPdf .NET package which is assigned to the project
using the NuGet package manager and allows the conversion
of HTML files to PDF format.

A Gitlab CI pipeline is used to automate the deployment
of the database and the Azure function applications and create
the required resources on the Azure platform. These operations
are triggered by a push operation on a specific Gitlab branch,
and performed in the order shown in Figure IV-A. As the



application must be only accessible during the competition,
the deletion of the resources is also automated.

The pipeline can be divided into different stages consisting
of jobs. The build-job within the build section is responsible
for collecting the files and dependencies of the function appli-
cations. The powershell-job creates different .zip folders from
these files for each function application separately. The second
stage is the deploy stage, which is responsible for generating
the resources on the Azure cloud provider side. The database-
create-job creates the database resource group and the SQL
server. The connection-string-job retrieves and completes the
database connection link with the username and password of
the administrator who is authorized to access the server. The
functions-deploy-job job creates Azure function applications
and the resources, uploads the zip files mentioned above,
and sets up the configurations of the function applications.
The database-resource-job runs the .Net project that creates
the database tables and inserts the default age groups and
the admin user. The delete stage is responsible for deleting
resources on the Azure cloud provider side.

B. Web technologies and tools

The website is implemented using the React.js [4]
JavaScript library developed by Meta Platforms for building
web applications. The technology allows the efficient devel-
opment of performant web applications by only reloading
the components that have changed, thus avoiding unnecessary
reloading of static components. It is based on the use of
reusable elements, within which the principle of rendering
logic is coupled with other user interface logic. The web appli-
cation is developed in Visual Studio Code and Node Package
Manager (npm) is used for the structural development and
the management of the project dependencies. To facilitate the
look and feel of the website, the Bootstrap open-source CSS
framework and the react-bootstrap npm package is used.

The real-time update of the results on the web page is
implemented using the Pusher Channels API [3]. The ser-
vice forms a real-time communication layer in the form of
channels, through which the server can signal to the client
application in the form of system events.

The web application is deployed to the Heroku [5]
container-based cloud platform, which allows the easy and free
deployment and management of applications by providing the
necessary infrastructure and software component maintenance.
Similar to the server, the deployment is automatically executed
within the deploy job of a pipeline. Whenever a push operation
is applied to the master the remote repository of the service
is synchronized with the current state of the project.

C. Mobile technologies and tools

The mobile application is also implemented in Visual Studio
Code using the React Native [6] cross-platform JavaScript
framework, which allows the simultaneous development of
Android and iOS platform. The application is developed
similarly to the webpage, as React Native is also a component-
based technology, and supports the integration of the React

framework within mobile applications by converting the com-
ponents in the background into platform-specific native ones.

For the development and deployment of the mobile app, the
Expo platform is used, which is a framework for facilitating
the maintenance of React Native applications.

V. CONCLUSIONS AND FURTHER DEVELOPMENT

The Athletimeter application is a three-component software
system that facilitates the digital processing of data needed to
manage an athletics competition.

As the application is used only during the contest, its
permanent availability is not necessary. Using pre-written
scripts, it is possible to automatically start the application
server before the competition and quickly remove it after.

The system’s web application provides a transparent and
user-friendly interface for organizers to maintain competition
data. In addition, the platform also provides spectators the
possibility to follow the results in real-time.

Through the mobile application, organizers can access ser-
vices that identify competitors and measure/save the results.

From the perspective of further development, on the server-
side, the existing scripts could be extended to customize the
resources stored in the cloud, so that multiple competitions
could be organized simultaneously.

At present, the web application allows archiving data in
different formats, but statistical processing is not ensured. The
organizers could be given the possibility to view statistics
and charts on a web page, based on the results stored and
aggregated according to different criteria.

The addition of multiple views to the information page
would offer different types of visualization of the results. The
spectators could choose between different display formats of
the data, which would make it more enjoyable to follow.

Some features of the mobile application are currently only
available on Android, and the deployed version is only avail-
able on this platform. Adaptation to the iOS platform is
therefore another option for further development.

As the QR code on the jersey may cause problems during
competitions, an alternative to the identification of the con-
testants could be to use an NFC reader. Participants could be
equipped with an NFC bracelet, which could be scanned by
the organizers using the mobile application. This would also
provide the possibility to automate the insertion of results for
timed events, as NFC gates with sensors could be placed at
the finish line to detect the arrival of the runner.

REFERENCES

[1] A. Freeman, PRO ASP.NET Core MVC, Apress, Berkeley, CA., 2016.
[2] P. K. Sreeram, Azure Serverless Computing Cookbook, Packt Publishing

Ltd, Livery Place, 35 Livery Street, Birmingham B3 2PB, UK ,2020.
[3] J. Lengstorf and P. Leggetter, Realtime Web Apps, Apress, Berkeley,

CA., 2013.
[4] D. Bugl, Learn React Hooks, Packt Publishing Ltd, Livery Place, 35

Livery Street, Birmingham B3 2PB, UK ,2019.
[5] N. Middleton, R. Schneeman, Heroku: Up and Running, O’Reilly Media,

Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2014.
[6] A. Boduch, React and React Native, Packt Publishing Ltd, Livery Place,

35 Livery Street, Birmingham B3 2PB, UK ,2017.


