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Abstract—In adventure parks, it is often difficult to photograph
visitors while they are crossing obstacles, due to the design
of the tracks. Hiring professional photographers to take
photos of visitors for social media can incur significant costs.
Photographers would require safety equipment and designated
locations as it would not be possible for them to stand on the
tracks.

The Adrenaline Eye project aims to achieve an automatic
camera system for photographing adventure park visitors.

Images are captured by track-mounted surveillance cameras
and processed to recognize the numbers printed on the helmets
of the riders. This number and the date of the visit associate
the images with the participant. Customers can view a gallery
of their pictures through a web application.

The current paper presents the structure of the
project, including its microservice-oriented architecture,
its communication patterns and its application of machine
learning elements.

Index Terms—microservice, message queue, computer vision,
helmet detection, number recognition

I. INTRODUCTION

Adventure parks, being part of the leisure and attractions
industry [1], tend towards digitizing their photography in
order to satisfy their guests in the modern era. Employing
photographers would sometimes not be possible as the trails
are typically laid out in wooded areas, among trees, through
which only one person can pass at a time. The solution may
rely in an automatic camera system, whereas customers would
not have to worry about bringing their gadgets for taking
pictures. The system would ensure quality photos fit for social
media, while the visitors can fully enjoy the adventure that the
park offers.

There are various solutions for identifying individuals in
public areas. One approach is AIPIX [2], which utilizes facial
recognition, while others, like Sniper Action Photo [3] or
Argus [4], are based on the use of RFID1. Using RFID tags
and detector antennas is more facile to apply than computer
vision methods. However, the maintenance of antennas and

1Radio-frequency identification

tags is time consuming, cumbersome, and not fully automated,
as visitors have to touch RFID readers on the rails.

The Adrenaline Eye project aims to solve this problem
by developing a system that automates the photography of
adventure park participants using surveillance cameras. The
system allows employees to introduce different cameras that
take pictures of the courses from time to time. Images
are processed based on the time recorded and the number
recognized on the helmet, and then linked to participants. After
completing the tracks, participants can access their gallery
through a web application.

The project is primarily developed for the Adrenalin Park2

located near Cluj-Napoca. The credit for the principal idea
goes to Levente Szélyes, founder and managing director of
the park.

II. PROJECT OVERVIEW

In its current state the system supports a single user role,
capable of accessing all its features, including camera and run
management. A run represents a visit to the park, marked by
the number of the safety helmet handed out, and the timestamp
of their arrival. Besides common entity operations, runs may
also be closed, and their associated images queried. Visitors
can view their photos on the website accessible by scanning
a QR code sent via e-mail, or by using the direct link to their
gallery page.

The application is based on a microservice-oriented
architecture [5] with a discrete microservice for each
individual reusable task. The communication between them
is predominantly message-based, although the web application
uses synchronous API requests through HTTP3. There are two
separate databases responsible for saving the model entities,
and two storage volumes used to save and read images.
The temporary volume stores unidentified photos whereas
the persistent one contains all successfully processed by the

2https://adrenalinpark.ro/en/
3HyperText Transfer Protocol



Fig. 1: The architecture of the system illustrating all the components and the communication between them.

computer vision modules, meaning that a helmet and its
number is recognized on the picture.

The project uses a RabbitMQ broker [6] for managing
message-based communication. The components and the
one-way communication between the microservices are
illustrated in Figure 1. The Camera manager on the left
side of the flowchart acts as a producer, i.e. it generates
messages, while the Central API on the right side only
processes messages which means it functions as a consumer.
At the same time, the Image capturer, Helmet detector, and
Number recognizer services are prosumers, they both produce
and consume.

III. MICROSERVICES

The following subsections present each microservice
detailing their structure, functionalities and operations.

A. Camera manager

The camera manager is a server exposing a REST API [7],
that makes managing cameras and scheduling tasks possible.
These operations can be accessed through HTTP requests sent
to the /api/cameras endpoint. The camera entities are
stored in a PostgreSQL [8] database. After adding a new
camera entity, a periodically scheduled task is also created
that sends messages to the image capturer (see Section III-B)
module to take a snapshot. When changes are made to
a previously introduced camera, the scheduler modifies the
related task or cancels it upon deletion. The messages contain
the camera UUID, the protocol for capturing images, address
and authentication data.

When the camera controller starts, it initializes the tasks for
the cameras persisted in the database. Once connected to the
message broker, the active jobs continuously send messages
to the image capturer until the camera entity is deleted,
or the service is shut down. When it stops, the scheduler
automatically releases pending resources.

The service is based on the Spring framework [9] and
uses the standard Controller-Service-Repository pattern for

its multilayer architecture. It exposes a RESTful API and
follows the DTO4 design pattern [10]. Additionally, Spring
Task Scheduler carries out the scheduling work, and Spring
Cloud Stream provides interfaces to facilitate message-based
communication with RabbitMQ.

B. Image capturer

The role of the image capturer service is to take pictures
with given cameras and save the captured images to a
temporary storage. It receives the required data from the
camera manager and sends an API request to the appropriate
camera, in response to which it receives a snapshot. On
success, the resulting image gets a unique ID, which is
transmitted to the helmet detector alongside the camera ID
and a timestamp that marks the creation of the snapshot.

The Hikvision brand IP camera used to test the microservice
captures 4MP images and connects to the Internet via Wi-Fi.
It supports ISAPI5 and those variants of the ONVIF6 protocol
which allow remote screenshots and/or streaming [11]. Upon
receiving a request to snap an image, the camera validates the
provided authentication information according to a pre-defined
username and password. Accepted credentials can be entered
in the administration interface of the camera upon enabling
the ONVIF protocol.

A camera simulator microservice is also implemented
for testing the other components without any additional
hardware dependencies. It mocks the API of the ONVIF
cameras by returning randomly selected images from a given
collection–these may be cherry-picked to create different
testing scenarios.

The service is implemented in Python 3. The API requests
are sent using the Requests library. Pika, an AMQP7 library,
is responsible for connecting to the message broker and
transmitting messages.

4Data Transfer Object
5Internet Server Application Programming Interface
6Open Network Video Interface Forum
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Number
of
entities

Train Validation Test Summary

Training dataset
Helmet 18196 4285 5455 27936
Head 76852 18757 21671 117280
Images 8045 2011 2515 12571

Fine-tuning dataset
Helmet 985 246 286 1517
Head 789 146 350 1285
Images 549 137 172 858

Distribution of images 64% 16% 20% 100%

TABLE I: The composition of the training and fine-tuning
dataset used to train the helmet detector neural network

C. Helmet detector

The helmet detector microservice receives a JSON
formatted message from the image capturer and processes the
images taken by the cameras. Detection is performed by a
YOLOv5 [12] neural network, which is able to locate head
and helmet objects using less computing power than other
object detectors. The message contains the name of the image
the service attempts to read from the temporary volume. The
message is discarded if the file does not exist. Whenever the
detector locates a helmet on the image, a message with the
bounding box coordinates of the object is forwarded to the
number recognizer (see Section III-D).

On service startup, the neural network is loaded based
on hyperparameters taken from environment variables. The
component can be initialized in either CPU or GPU
mode, impacting which unit performs performance-sensitive
calculations, such as the object detection. For the detection,
three different sized neural networks can be configured. The
smallest nano detector has 1.9 million parameters and is the
fastest but also the least accurate. A small version with
7.2 million parameters is slower but performs better, and a
medium network with 21.2 million parameters is the slowest
of the three, but provides the best results.

Training of the YOLOv5 networks consists of two stages:
initial training and fine-tuning. In both stages, the experiments
can be categorized based on the following criteria:

• Network size: nano, small or medium.
• Augmentation: Trainings with default augmentation

values specified by YOLOv5 authors or experiments
with increased augmentation parameters. The default
augmentation includes the following transformations:
increased values on HSV color channels by 1.5%,
70%, and 40%, respectively, random 10% translation
and vertical axis mirroring with a 50% chance. The
increased augmentation setting includes increasing each
HSV color component by 100%, random 50% translation,
and vertical axis mirroring with a 50% chance. It also
applies -25 to 25 degree rotation, mosaic composition,
mix-up, and segment copy-paste to each image.

• Number of object classes: Normal trainings with both
helmet and head objects, or single class experiments,
where only the helmet annotations are used.

Two separate datasets are created to train the models:
a larger training set containing images taken mainly on

Network
size

Augmen-
tation

Precision
(%)

Recall
(%)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

medium default 93.8 88.2 91.9 74.0
increased 90.2 91.8 93.7 72.4

small default 91.3 90.2 92.8 73.0
increased 92.5 89.5 93.0 70.1

nano default 91.9 88.0 92.0 69.1
increased 90.9 87.0 91.5 65.7

TABLE II: Performance of the fine-tuned networks on their
corresponding test dataset

construction sites; and a smaller set consisting of real-world
adventure park scenes. The final training set is created by
merging the Safety Helmet Detection [13] and Safety Helmet
Wearing [14] datasets. Related statistics are presented in
Table I.

Throughout the experiments the Adam optimizer is used
with β = 0.937. The initial learning rate is 0.001, which
is modified by a OneCycle learning rate scheduler [15]. The
value of weight decay is 0.0005. Each experiment begins with
3 warmup epochs, with an initial momentum of 0.8 and an
initial bias learning rate of 0.1.

The process starts with all 3 network sizes and both
augmentation settings pre-trained for 300 epochs on the
MS-COCO dataset. Based on training statistics it can be
concluded that strong augmentation increases recall by an
average of 22%, mAP@0.5 by 10.5%, and mAP@0.5:0.95
by 2.5%, but decreases accuracy by 2.6%. The medium
sized model preformed best, reaching a mAP@0.5 and
mAP@0.5:0.95 of 95.4% and 79.2%.

The 100 epoch long fine-tuning starts from the weights
of the networks trained in the previous phase. The images
in the afferent dataset are resized to 640x640 resolution.
All three network sizes are further trained with default and
increased augmentation. Based on the experiments performed
in the second phase, it can be stated that fine-tuning

Fig. 2: The mAP metrics during the training and fine-tuning
of the best performing, medium sized model using increased
augmentation. At the end of the fine-tuning phase, the
mAP@0.5 and mAP@0.5:0.95 on the validation set was
95.5% and 71.9% respectively.



improves performance. The recall of these networks on their
corresponding test dataset is higher by an average of 16.9%,
mAP@0.5 by 12.2%, and mAP@0.5:0.95 by 31.7% compared
to networks trained in the initial phase. The precision increases
only by 7.6%. Since it is already high after the initial training,
fine-tuning cannot further increase it. Table II contains the
performance statistics of these models, while Figure 2 shows
the mAP metrics during the experiments with the best
performing model.

If it is possible to track the position of a helmet
between consecutive images, then the system is able to
assign a previously detected helmet number to an image,
even if the number is not visible. The position of the
helmet can be determined with MOSSE [16], meanshift and
CAMshift [17], Kálmán-filter [18], and ROLO [19]. Testing
the MOSSE tracker shows it cannot perform well in the
low FPS environment that is created by the periodic image
capturing, because the displacement of the helmet between
two consecutive images is too large.

D. Number recognizer

The number recognizer is the second service that
performs image processing based on images that contain
detected helmets. Its technology stack and startup behavior
resembles that of the helmet detector, with the addition
of the EasyOCR [20] library for number recognition, and
OpenCV [21] for pre-processing.

Messages arriving from the helmet detector contain the
name of the photograph, the time it was taken, the ID of the
camera and the bounding box coordinates of the helmet. The
image is retrieved from the shared storage, cropped around
the rectangle that defines the helmet, and then enlarged. After
this pre-processing, it is evaluated by the neural network. The
result may contain several predictions; the one with the highest
confidence score is retained. If the confidence level obtained
for the prediction exceeds a configured threshold value, the
result is forwarded to the central API (see Section III-E)
message queue.

The EasyOCR library is tested on a dataset of 30 images
gathered from the Adrenalin Park website and augmented
with public stock photos. The average input size is 399.3
x 433.9 pixels. The tests reveal that the position of the
numbers greatly influences the prediction of the EasyOCR
neural network. Better accuracy is achieved when the numbers
are in a horizontal position. Since it is not known exactly at
what angle the person is rotated in relation to the camera,
a general rotation is introduced into the system. Images are
evaluated by rotating 0, 30, and -30 degrees, in order. If
the confidence level of a prediction exceeds the threshold
value, the evaluation no longer continues for the other rotation
variants. This method increases the initial 85% accuracy on the
test dataset to 93.3%.

E. Central API

The central API is principally responsible for managing runs
and identified images. A run entity contains the e-mail address

provided by the visitor, the assigned helmet number and the
start time of the visit. Once the run is completed, an end date
is also attached to it. The /api/runs RESTful endpoint
exposes CRUD8 operations on the run entities. When a run is
created, the service generates a QR code containing the URL
of the gallery page, and sends it as an e-mail to the visitor.

The server additionally listens for messages from the
number recognizer. Upon receiving one, it copies the image
from the temporal volume to the persistent volume and creates
an identified image entity in the database. The saved images
are available as static content through the /images endpoint.

The API is built with Spring Boot, with the same
technologies, tools, and dependencies as the camera manager.
The QR code generation is provided by ZXing9 [22] library
and the e-mails are sent via the SendGrid [23] Java Client
API library. Using the configuration mechanism provided by
Spring, the two packages mentioned above can be configured
based on environment variables.

F. Frontend

The project allows users to manage cameras and runs using
a web application. Adventure park visitors can use the app to
view the images taken of them by the cameras in the park. This
data is provided by the central server and camera controller
services.

The communication with the camera manager and central
API is achieved via the Axios [24] library; separate
environment variables are responsible for the request paths
to the connected backend services.

The application is written in TypeScript [25] using the
Next.js [26] framework. The presentation layer is made up of
reusable styled React components. Next.js handles navigation
by mapping top-level component paths to URL patterns,
retaining the Single-Page Application nature of the website.

The user interface (UI) consists of MUI [27] components,
MUI being a widely used, customizable React-based UI library
which guarantees a unified look with predefined components.
These provide responsive and user-friendly operation for an
application.

IV. THE USAGE OF THE WEB APPLICATION

When the application is launched, the user is greeted by a
home page. The web page has a navigation bar that can be
accessed using the icon on the left.

The first functionality of the web application is the
management of the cameras. Separate pages are provided
for their listing and modification (see Figure 3). To add
cameras, the user needs to fill out a form with its access and
identification information, and an interval value which defines
how many seconds apart it is going to take pictures of the
track. Once completed, the app will send the information to
the camera manager service. After uploading, the user receives
feedback from the web application in the form of a message.

8Create Read Update Delete
9Zebra Crossing



(a) Run creation form (b) Listing cameras

Fig. 3: Run and camera management pages.

Upon success, the rest of the system starts processing the
images received from the camera, as described in Section III.

The next functionality is the registration of the runs. A form
is presented where the participant e-mail address and helmet
number must be entered. By default, the form sets the start date
of the run to the time the page is loaded and leaves the end time
blank. Upon completion, the website sends the information to
the central server and receives feedback on the success of the
process. When the user enters a run, the central server saves
the information and starts associating images based on the
messages it receives from the number recognizer. The server
then sends a QR code to the e-mail address of the participant.

On the run management page the already created runs are
displayed, which can also be modified and deleted. The Finish
Run button closes the active runs, signalling the current time
as the end time to the server.

Galleries for each run may also be accessed here.
Alternatively, they can be searched by their unique IDs, or
by using the QR code received in the e-mail.

V. CONCLUSION AND FURTHER DEVELOPMENT

Within the Adrenaline Eye project, an application has been
developed that recognizes the numbers that appear on helmets
based on images taken by the cameras and associates them
with a particular run based on time.

The system is created with a microservice-based
architecture, in which the camera manager service is
able to manage the cameras and schedule the photo-taking
tasks, the image capturer service captures and temporarily
stores the images taken by the different cameras. Among the
image processing microservices, the helmet detector is able
to locate heads and helmets, while the number recognizer
identifies the numbers on the helmets. The central API server
takes care of the management of runs, persists and makes
identified photos accessible for the web application.

The web application provides a user-friendly platform to
manage cameras and runs, and displays images associated with
the latter in a gallery form.

Message-based communication between services is
achieved with the help of a RabbitMQ message broker,

and each service is containerized, giving way to virtualized
deployment strategies with tools such as Kubernetes.

Several possibilities for further development have
emerged during the design and development of the various
microservices:

• User management for the API servers and the web
application: segregating features from admins and
adventurers by creating separate roles. The admin user
could manage the cameras, runs and images, while the
participants could view their own runs and associated
images.

• Introduction of a mobile application for adventure park
staff to manage the system.

• Applying edge detection before number recognition to
make numbers horizontal, or use an OCR library more
robust to the issue of rotation angle.

• Use helmet tracking, which allows the system to associate
a visitor with an image that does not display the helmet
number.

• Utilize further functionalities of smart cameras, such as
motion detection and event notifications, which could
replace the current scheduled snap shooting with a more
applicable, less resource-demanding service.
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