
medR: Software System for Managing
Medical History and Patient Examination Data

Anita-Bella Réthi
Babeş-Bolyai University
Cluj-Napoca, Romania
rethi.anita@gmail.com

Krisztián-Tamás Antal
Babeş-Bolyai University
Cluj-Napoca, Romania

antal.krisztian@outlook.com

Orsolya Máthé
Codespring

Cluj-Napoca, Romania
mathe.orsolya@codespring.ro

Mátyás Fosztó
Codespring

Cluj-Napoca, Romania
foszto.matyas@codespring.ro

Tamás Koncz
Codepsring

Cluj-Napoca, Romania
koncz.tamas@codespring.ro

Károly Simon
Babeş-Bolyai University
Cluj-Napoca, Romania
ksimon@cs.ubbcluj.ro

Abstract—The purpose of the medR project is to lighten the
burden on the local healthcare system given by the sub-optimal
handling of large amounts of information. The main scope of the
project is to provide help during the medical history collection
and patient data management phases.

During the first steps of a patient’s examination, critical
information may be gathered that determines the entire treatment
of the disease. Currently, the Romanian medical system faces
cumbersome data recording capabilities, troublesome data re-
trieval, and a lack of transparency. All of this can lead to the loss
of valuable information, wrong decisions, and inadequate patient
care, even resulting in financial or physical harm. The medR web
application enables extensive data recording possibilities and the
generation of statistics, assisting in these tasks by integrating
already existing systems and providing easy and simultaneous
use for healthcare professionals.

I. INTRODUCTION

The main task of the health care system is to deal with
the problems of the patients seeking help. In the first steps
of this process the health team - the doctor, health assistant,
nurse - gathers a large amount of information and then makes
critical decisions based on this information. Thus, it is critical
for the treatment process that the information coming from the
patients and the information gathered during the first examina-
tions is collected correctly and it is managed in an organized
and transparent manner. One of the most significant strains
on the current Romanian healthcare system is the sub-optimal
management of this process [1] [2]. MedR provides a solution
for recording, storing, retrieving and processing information
obtained from the above-mentioned data collection process.

The path that leads to the correct diagnosis and the selection
of the appropriate treatment is: taking the medical history,
where data is widely collected (including personal data, past
diagnoses, family medical history and other associated health
care data), and the patient’s current complaints [3]. This data
collection process is followed by the physical examination,
which is based on viewing, listening, and knocking performed
by the healthcare team. Based on the collected information a
primary diagnosis is made and the healthcare team may order

additional paraclinical examinations. If these tests are ordered
based on incorrect information, then an unnecessary financial
burden will be placed on the system and the patient, sometimes
even exposing the patient to physical harm.

Although there are already software systems that deal with
these stages of treatment, these systems aim to provide a
comprehensive solution for managing the complete dataset
of a patient (see ERA Medical1, Teamnet Dedalus2). Their
weakness lies in that they place little emphasis on the first
steps of the treatment, collecting and displaying data in a
less organized manner, making the retrieval and analysis of
said data cumbersome. Based on this observation, the main
idea behind the medR project is to create an application
that focuses on these first stages of the examination process
and works on any platform that can run a modern browser,
making it available on desktop computers used in the office,
and also on mobile devices used near hospital beds. Using
the application, healthcare professionals have the opportunity
to build and efficiently manage their patient database by
recording patient information and examinations. At the same
time, the application helps the interpretation of the data by
generating statistics and reports. A wide range of information
can be collected about patients: personal data, personal and
family medical history, allergies, prescribed medications, spe-
cial needs, received vaccinations, history of complaints and
their localization, strength, quality, frequency, time of onset,
different living conditions recognized during the study and
data obtained during other physical examinations.

II. FUNCTIONALITIES

Although there are several roles in the healthcare systems,
during the development of the medR application the main
focus was on the examiner role, which represents healthcare
professionals such as medical students, nurses, or doctors
(residents, specialists, or chief physicians).

1ERA Medical: http://www.midasoft.ro/modulul-medical/
2Teamnet Group: http://www.teamnet.ro/

http://www.midasoft.ro/modulul-medical/
http://www.teamnet.ro/

A registration is required for using the features of the appli-
cation. After logging into the system, all of the functionalities
can be accessed by the previously registered users.

First of all, the examiner can view a list of his patients.
When adding a new patient, an extensive set of information
can be introduced into the application: personal information,
individual and family medical history, known allergies and
medications, special needs, comments, etc. This information
will be displayed on the patient’s datasheet, supplemented by
a list of previous vaccinations and consultations.

When adding a new consultation, the examiner can record
the symptoms, their localization, periodicity and intensity,
together with accentuating and mitigating causes and possible
diagnoses. The examiner can also mention living conditions
that might influence the final diagnosis (smoking, alcohol or
drug consumption, and other factors). Once a diagnosis or
symptom is successfully confirmed, it can be closed, but only
after giving the exact reason for the closure. Once finalized, the
consultation will become read-only, transferring the diagnoses
into the patient’s medical history. Each user has the possibility
to create different statistics and reports based on the data
collected about their patients.

III. ARCHITECTURE

The medR application is built on a client-server architec-
ture. The server is implemented using the Spring framework
and provides a REpresentational State Transfer (REST) [4]
Application Programming Interface (API) through which the
services can be accessed. The data is stored in a PostgreSQL
database, and external services are also used as additional data
sources. The client is a Progressive Web Application (PWA)
created with the Angular framework. The communication
between these two components is handled via REST calls and
it is based on the Data Transfer Object (DTO) design pattern.

The server communicates with the API provided by the
National Library of Medicine (NLM) at the National Institute
of Health (NIH) in the United States [5]. The data provided
by the API refers to the international names of symptoms and
diagnoses and their ICD-10 (International Statistical Classifi-
cation of Diseases and Related Health Problems) codification.
This ensures that the names and codifications of the symptoms
and diagnoses entered into the system comply with interna-
tional standards, while also providing a client-side search and
auto-complete function.

Figure 1 illustrates the architecture of the application, the
mentioned components being detailed in the next sections.

IV. SERVER

The server is built on a multi-tier architecture. The persistent
data model is the set of elements that define the structure
of the database, while the domain model is a specific form
of this structure, made up of model classes that represent
the most fundamental data in the application and play a
role in implementing the business logic. The persistent model
is created using the Java Persistence API (JPA), based on
annotations placed on the model classes.

Fig. 1. Architecture of the application.

The multi-layered architecture provides easier code main-
tenance, it makes it easier to identify and correct errors,
and since the communication between the layers is realized
through interfaces, each layer can be easily modified or even
completely replaced if necessary without influencing other
layers.

The bottom layer of the server is the repository, the data
access layer, which handles the communication with the
database, as well as the conversion between persistent and
domain models, so the fundamental CRUD (Create, Read, Up-
date, Delete) operations and specific queries can be accessed
through it.

The service layer contains the business logic, implementing
the services provided by the system, and publishing these
services for the upper layers.

The top layer of the server is the controller layer which is
responsible for communication. This layer is in charge for re-
ceiving REST requests and responding to them. The responses
are made up of DTOs, which are specific representations of
the models, omitting or adding details to the model objects.
These DTOs are created by the assemblers, which have the
purpose of converting and organizing data from the service
layer into DTOs.

A. Domain model

The domain data model can be divided into two distinct
parts: models that carry information about individuals (patients
and examiners) and models that are related to diseases and
diagnoses.

In the case of each person, general data is introduced, which
includes personal information, address and contact details. If
the person belongs to the patient subgroup, additional informa-
tion is gathered, such as the patient’s personal and family med-
ical records, allergies, prescriptions, vaccines, special needs,
or other medically relevant social details, including marital
status and occupation. If the individual is an examiner, their
position in the healthcare system (doctor, nurse or student) and
data about the medical unit they work at (hospital or medical
station) is collected.

Fig. 2. Part of the Domain model.

The main entity in the disease-related model set is the
examination. An examination consists of a set of symptoms,
living conditions and associated diagnoses. A complaint in-
cludes the name of the symptom, its ICD-10 code and the
characteristics of the complaint, such as localization, severity,
timing, frequency and a list of relieving or aggravating factors.
Living conditions are elements that may affect a patient’s life,
health or may be related to specific complaints. This includes,
for example, the patient’s habits related to tobacco, drug, or
alcohol consumption.

B. Data access layer

The communication between the server and the database is
realized using an Object Relational Mapping (ORM) frame-
work, specifically the Hibernate implementation of the Java
Persistence API (JPA) . Since the Spring Data JPA framework
is also used as an upper layer built on this, the classes of this
layer do not need to be implemented by the developer, only
interfaces should to be created, extending the JpaRepository
base interface and using the @Repository annotation. Thanks
to the Spring Boot autoconfiguration mechanism, these inter-
faces are automatically found by the system and Spring Data
JPA generates the needed implementations.

The CRUD (Create, Read, Update, Delete) operations are
included in the JpaRepository, although there are also ways
to create custom queries. The first of these methods is to
automatically generate queries based on the names of the
methods declared in the interfaces. If the query cannot be
defined in this way due to its complexity, it is possible to
define queries written in Java Persistence Query Language
(JPQL) using the @Query annotation.

Furthermore, Spring Data JPA supports query-level paging
and sorting through the Pageable and Sort interfaces. This
ensures, on one hand, that such requests do not overload the

system and, on the other hand, that the data can be sorted
based on specific relevant parameters (e.g. patients by date of
birth).

C. Business logic layer

The business logic layer is responsible for processing and
organizing data retrieved from the data access layer in or-
der to generate responses for the communication layer. The
Dependency Injection design pattern is used for managing
the dependencies between the components. The @Service
annotation indicates to the Spring framework that the classes
are injectable, so the framework instantiates them upon system
startup and provides instances to the classes in which they are
required.

The service layer is responsible for generating statistics
from patient diagnoses and symptoms, processing data from
the National Library of Medicine API, and the creation of
Pageable and Sort objects for paging and sorting the data
retrieved by certain requests. The core security mechanism
of the system is also implemented here, which is described in
more details in the following subsections.

D. Communication layer

The communication with the client takes place via the
controller layer, based on the REST conventions. A separate
controller class is assigned to each entity that must be available
to the client. The controllers are marked with the @Rest-
Controller annotation and the @RequestMapping annotation
determines the path to them.

In addition to entity-specific controllers, there are controllers
for providing authentication, statistics, and data from the
National Library of Medicine. Each controller class makes
a specific data set available through annotated methods cor-
responding to different request types (GET, PUT, POST,
DELETE) and having particular URIs. The methods use as-
semblers to convert the data received from the service classes
into DTOs, which are then sent back to the client wrapped
in ResponseEntity objects, supplemented with extra data and
HTTP headers as needed.

E. Security

Since one of the primary purposes of the project is to
store significant volumes of sensitive information (patients’
personal and medical data), security has a great priority during
the development. The Spring Security framework is used in
the implementation, which primarily deals with authentication
and authorization, and it is a fairly flexible framework. The
WebSecurityConfigurerAdapter abstract class is extended in
order to create a project specific configuration.

The first functionality related to the security mechanism is
the registration. The user’s password is immediately encrypted
and saved in this format in the database. To encrypt passwords,
a BCryptPasswordEncoder instance is used, as specified in the
PasswordConfig.

When a user logs in, the JwtTokenProvider generates a
JSON Web Token [6] containing a certain data needed in order

to identify the user (this is the email address in the case of
medR), the time it was created and the expiration time. The
token is sent back to the client page in the form of a cookie
in the response header, which will later identify the user when
they want to access a route after logging in.

Routes matching the /auth/** pattern are available to any-
one, these contain three basic functionalities of the app:
registration, login, and logout. If a request is made for a
different path, it will be redirected to a JwtRequestFilter,
which will check if the user handling the request is logged
in. The first step is to check whether there is a cookie in the
request header that includes a JWT. If there is one, the validity
of it will be checked and access to the required route is only
allowed if there are no problems found. Otherwise, the cookie
is deleted, and a message with the 403 status code is returned
to the client.

V. CLIENT

The client is an Angular Single Page Application, which has
the advantage of loading the whole page only once, and then
updating only the parts where the content changes. When the
user visits the website, it will load all of the required HTML,
CSS, and JavaScript files, after which only the data that needs
to be displayed will be requested from the server. This makes
the application faster and easier to navigate compared to multi-
page web applications.

A. PWA and WebApk

During the development of the medR project, it was a high
priority to make the application accessible from any platform
(desktop, tablet, smartphone). As a result, the client is a
progressive web application (PWA), which has the advantage
of functioning similarly to native applications without the need
to develop a separate version for each operating system. This
not only simplifies the planning process but also shortens the
overall development time.

Progressive web apps have the advantage of being able to
be installed on any device that has a browser. After that,
the application icon will appear on the home screen. The
application will be started in a separate window rather than
a browser tab, much like a native application. This installed
version of the application can be used even if there is no
internet connection, as the previously cached data can be
accessed.

WebAPK is a progression of PWA that began with the
premise that a Progressive Web Application could be bundled
into an APK (Android application package). As a result,
these programs are much more compatible with the Android
operating system than before, behaving almost identically to
native applications. [7]

B. Components

The components are the so-called building blocks of an
Angular application, and the tree structure made up of Angular
components is the application itself. These are TypeScript
classes, indicated by the @Component decorator.

During the preparation of the project, a strong focus was
placed on the separation of commonly used UI elements,
incorporating them into their own components. The reason
for this was not only to prevent code duplication, but also to
make the component with the provided logic reusable, thereby
speeding up the development process. The central components
of the project were created based on this logic: the buttons,
table, patient cards, and so on.

C. Services

To separate the communication with the server-side API,
services were created on the front-end. Services are Type-
Script classes that use the Dependency Injection (DI) design
pattern, and are annotated with the @Injectable() decorator.
Services may be injected into any component, simply adding
a parameter with the service type to the constructor, and the
framework will provide a functional instance. In the medR
project, these classes are primarily used to receive and send
server-side DTOs that have similar or even identical models
written in TypeScript.

D. Routing and Guards

Because Angular is a set of components, and each com-
ponent has its own view, there has to be a way to navi-
gate between different views, displaying some of them while
removing others from the page. The routing mechanism is
implemented by using the Angular Router. A path can be
assigned to each component in the AppRoutingModule, and
these paths interpret a browser URL.

Angular Route Guard is a logic or functionality that is
executed before loading the selected route or when leaving
the route. These can implement the CanActivate, CanLoad
or CanDeactivate methods, depending on when and for what
purpose are used. In this case, these guards were used to
prevent unauthorized (not logged in) users from accessing
certain views on the client, so the CanActivate and CanLoad
methods were extended. Route guards can be assigned to any
route in the AppRoutingModule .

VI. TECHNOLOGIES AND DEVELOPMENT TOOLS

The server is written using the Spring framework [8] and
the Spring Boot [9] technology, chosen for their flexibility,
cross-platform capabilities, and for their ability to create a
runnable application without the need of an external web
server. The communication between the PostgreSQL [10]
database and the server is handled using Spring Data JPA [11],
an abstraction layer over the Hibernate ORM framework, used
as JPA implementation. Authentication and authorization are
implemented using the Spring Security module [12] and JWT
tokens [6].

The client is built using the Angular technology [13], a
component-based framework created by Google, which im-
plements the Model-View-Controller and Dependency Injec-
tion design patterns. Each Angular component consists of
three files: a TypeScript [14] file containing the logic of the
component, an HTML-like Angular template containing the

Fig. 3. Dashboard: The main page of the application, where the examiner
can see and manage his patients

view, and a CSS or SCSS file containing the used styles.
The asynchronous communication with the server is achieved
using the Angular HttpClient and RxJS [15] for managing the
data stream coming from the backend. The Bootstrap CSS
framework [16] and the NG Bootstrap component library [17]
is used for styling the application.

Source code management is realized with git [18], using a
self-managed GitLab [19] instance as a DevOps platform and
remote repository. The backend project uses Gradle as its build
and dependency management tool, the frontend project uses
Angular CLI and NPM for these tasks. Static code analysis
on the frontend is done using ESLint and Prettier, while
on the backend CheckStyle, SpotBugs, and PMD are used.
For deployment, Docker images are created using GitLab
pipelines, which are then used to deploy the application to
a Kubernetes [20] cluster. The deployed application is set
up using Deployments [21] and Statefulsets [22] for easy
horizontal scalability and error recovery.

VII. USING THE APPLICATION

A registration is required for using the application, during
which the examiner must provide his personal information,
contact information, medical details (title, role, department),
workplace details, together with an email address and a
password.

After successfully logging in, the dashboard (see Figure
3) will appear, containing a list of the examiner’s previously

Fig. 4. Part of a patient’s datasheet

Fig. 5. Complaint editor when editing a consultation.

introduced patients. The patients can be sorted in ascending
or descending order by name, age, or the date of their last
consultation. To make finding patients easier, the examiner
can filter through them by name and diagnosis. The user can
also add new patients to his database from this dashboard.

When adding a new patient, the examiner can navigate
between six tabs, each of which can manage a different part
of the patient’s data. Before accessing the other tabs, the user
must correctly fill out the form in the Personal Data tab. At this
point, the patient is saved to the database, and the examiner can
choose to continue filling out the remaining data or fill it out
later. This process involves a significant amount of data entry,
as in addition to the patients’ personal information, it will
be collected data about their past diagnoses, family medical
history, allergies, medications, received vaccinations, and their
special needs.

After completing the patient form, the examiner can access
the patient’s datasheet (see Figure 4). This page provides an
overview of all the information known about the patient, and
there is a possibility to edit the existing data or add new data
when needed.

The examiner can also see and access the patient’s con-
sultations. When creating a consultation, the examiner must
first provide the time and date. Following this, the examiner
can introduce the patient’s complaints, providing the name,
severity, and a brief description of the symptom, based on

Fig. 6. The statisctics page.

the patient’s narration. It is also possible to introduce the
onset and ceasing times of the complaint, and the frequency,
if it is recurrent. Aggravating and relieving factors may also
be mentioned. The last step is to determine the localization
of the complaint by selecting the affected body part on the
puppet seen in Figure 5. Similarly, all possible diagnoses are
recorded, together with the conditions that might influence the
final diagnosis. The complaints and diagnoses can be locked,
after which these will be no longer editable. When closing a
diagnosis, the examiner must mention the reason for closing it,
after which the diagnosis will appear in the patient’s medical
history.

Another important functionality is the Statistics page (see
Figure 6), where various statistics can be generated based
on the patients of the logged-in user. The examiner can first
choose whether the statistics should be based on the data of the
patients currently being treated, or on the data of the patients
who have already recovered. The examiner can then select one
of three statistics types (diagnoses, symptoms, or comparative
statistics), select the appropriate options from a series of drop-
down lists, and finally, click the ”Create” button to display the
statistics in the form of an easy-to-read graph.

VIII. CONCLUSIONS AND FURTHER DEVELOPMENT

The current version of the medR project provides a platform
that allows healthcare professionals to create their patient
database by collecting personal and medical data, to easily
manage it, and generate aggregate or comparative statistics
based on the information stored about their patients. All phases
are aided by a transparent, logically structured user interface.
A diagnostic and symptom search function is created with
the help of external services, and interactive components are
integrated, like the examination editor.

During the planning and development of the project, several
further development possibilities were discussed, which will
be carried out in a future development cycle. A critical
milestone in the lifecycle of the application would be the
implementation of collaboration functionalities, which would
require the creation of export and import functions. Moduls
for supporting educational and research activities could be
also included. More medical reports could be generated, which
would require the extension and more accurate systematization
of the collected data. Despite the extensive data collection, the

currently used method provides only a partial coverage for
the data amount collected during a medical examination. The
extension of the collected data would also help improve the
statistics-generation functionality with a module for proving
or disproving correlations between symptoms.

Connecting an API that provides drug data is also planned,
which could be useful for search functionalities, and it can
be used to recognize the relations between the symptoms and
some possible side effects of the prescribed medications. Since
currently The European Medicines Agency does not have a
freely available API, using commercial APIs or a proprietary
implementation would be required.

In addition, the creation of a web interface for the patients
should also be part of the development, where the patients can
see and manage the information collected about them. To com-
ply with the data protection and security regulations governing
the medical applications, the data has to be made available for
the patients, and it must be encrypted, as expected.

REFERENCES

[1] Mida Soft Business, “Provocările sistemului medi-
cal românesc.” [Online]. Available: https://www.midasoft.ro/
provocarile-sistemului-medical-romanesc/

[2] O. Miron, “O radiografie a sistemului de sănătate din românia,”
Revista Polis, vol. 8, no. 1, 2019. [Online]. Available: https:
//revistapolis.ro/o-radiografie-a-sistemului-de-sanatate-din-romania/

[3] S. R. Hutchison, D. Hunter, and R. Bomford, Clinical methods. Cassell,
1963.

[4] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine Irvine, 2000,
vol. 7.

[5] National library of medicine clinical table search service. [Online].
Available: https://clinicaltables.nlm.nih.gov/

[6] JWT documentation. Introduction to json web tokens. [Online].
Available: https://jwt.io/introduction

[7] F. S. Correa. Progressive web apps vs. webapks. [Online]. Available:
https://www.inovex.de/blog/progressive-web-apps-vs-webapks/

[8] Spring documentation. Spring framework overview. [On-
line]. Available: https://docs.spring.io/spring-framework/docs/current/
reference/html/overview.html

[9] C. Walls, Spring Boot in action. Manning Publications, 2016.
[10] PostgreSQL documentation. PostgreSQL: About. [Online]. Available:

https://www.postgresql.org/about/
[11] Spring Projects Website. [Online]. Available: https://spring.io/projects/
[12] P. Mularien, Spring Security 3. Packt Publishing Birmingham,, England,

2010.
[13] Angular documentation. What is angular? [Online]. Available: https:

//angular.io/guide/what-is-angular
[14] TypeScript documentation. Typescript for the new programmer.

[Online]. Available: https://www.typescriptlang.org/docs/handbook/
typescript-from-scratch.html

[15] RxJs documentation. Introduction. [Online]. Available: https://rxjs.dev/
guide/overview

[16] Bootstrap documentation. Introduction. [Online]. Available: https:
//getbootstrap.com/docs/4.3/getting-started/introduction//

[17] NG Bootstrap documentation. Introduction. [Online]. Available: https:
//ng-bootstrap.github.io/#/getting-started

[18] S. Chacon and B. Straub, Pro Git. Apress, 2014.
[19] GitLab documentation. What is gitlab. [Online]. Available: https:

//about.gitlab.com/what-is-gitlab/
[20] Kubernetes documentation. What is kubernetes? [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
[21] ——. Deployments. [Online]. Available: https://kubernetes.io/docs/

concepts/workloads/controllers/deployment/
[22] ——. Statefulsets. [Online]. Available: https://kubernetes.io/docs/

concepts/workloads/controllers/statefulset/

https://www.midasoft.ro/provocarile-sistemului-medical-romanesc/
https://www.midasoft.ro/provocarile-sistemului-medical-romanesc/
https://revistapolis.ro/o-radiografie-a-sistemului-de-sanatate-din-romania/
https://revistapolis.ro/o-radiografie-a-sistemului-de-sanatate-din-romania/
https://clinicaltables.nlm.nih.gov/
https://jwt.io/introduction
https://www.inovex.de/blog/progressive-web-apps-vs-webapks/
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://www.postgresql.org/about/
https://spring.io/projects/
https://angular.io/guide/what-is-angular
https://angular.io/guide/what-is-angular
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://rxjs.dev/guide/overview
https://rxjs.dev/guide/overview
https://getbootstrap.com/docs/4.3/getting-started/introduction//
https://getbootstrap.com/docs/4.3/getting-started/introduction//
https://ng-bootstrap.github.io/#/getting-started
https://ng-bootstrap.github.io/#/getting-started
https://about.gitlab.com/what-is-gitlab/
https://about.gitlab.com/what-is-gitlab/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

	Introduction
	Functionalities
	Architecture
	Server
	Domain model
	Data access layer
	Business logic layer
	Communication layer
	Security

	Client
	PWA and WebApk
	Components
	Services
	Routing and Guards

	Technologies and Development Tools
	Using the application
	Conclusions and Further Development
	References

