
Truxi: A Software System for Enhancing The
Communication Between Truck Drivers and

Retailers
Bertalan Vad

Babes, –Bolyai University
Cluj–Napoca, Romania
vadbertalan@yahoo.com

Anna Kiss
Codespring

Cluj–Napoca, Romania
kiss.anna@codespring.ro

Roland Nagy
Codespring

Cluj–Napoca, Romania
nagy.roland@codespring.ro

Ákos Orbán
Codespring

Cluj–Napoca, Romania
orban.akos@codespring.ro

Károly Simon
Babes, –Bolyai University
Cluj–Napoca, Romania
ksimon@cs.ubbcluj.ro

Abstract—The purpose of the Truxi system is to connect
freelancer transporters with users, who wish to deliver their
goods.

The software system consists of a mobile and a web application,
which communicate with a central server. Suppliers are able to
post their transportable goods through the web page. Drivers use
the mobile app to make offers on cargoes and to get in touch
with their clients. Furthermore, the system can suggest them an
optimal route, that consists of the pickup and delivery locations
of the transportable cargoes. By covering the suggested route,
drivers can deliver the objects in the shortest way possible.

I. INTRODUCTION

It is a common problem, that someone would like to deliver
valuables to a specific location, but can not realize it on their
own. Nor the advertisement section of the newspaper, nor the
internet will be able to help, since these kinds of services are
rare and harder to find.

There are not so many freelancer truck drivers, because the
number of jobs is relatively low and it is harder to earn a
decent living out of it. One reason behind this is the already
mentioned problem, the absence of a competitive platform.
Most of the freelancer drivers are advertising their service on
e-commerce sites, such as OLX 1. The problem with these
sites is, that they were not developed for this kind of matter
and they do not provide a decent and clear communication
channel between the drivers and their suppliers.

The software system behind the Truxi application brings
a solution to the mentioned problems. It provides an online
web platform for the suppliers, who own the transportable
goods, where they can post so called cargoes, which will be
available for the drivers to transport. Truxi also provides a
mobile application for the drivers (available both on Android
and iOS), where they can browse the available cargoes, and
they can place offers on them. Since not only one driver
can place a bid on a specific cargo, there will be a rivalry
among them and the winner is selected by the cargo owner.
After being selected, the driver receives detailed information
about the cargo, including the contact information of the cargo
owner. After accumulating more accepted cargo jobs through
the mobile application, the drivers are able to generate the

1www.olx.ro

shortest possible route, which, if taken accordingly, takes the
least amount of time to transport every cargo from the pickup
location to the delivery location.

The project consists of three components: a web client, a
mobile client and a central server responsible for data man-
agement and communication between the client applications.

II. FUNCTIONALITIES AND ROLES

There are two main user roles within the system: supplier
and driver. The suppliers can operate on the web client, while
drivers operate on the mobile application exclusively.

A. Supplier

In order to access the functionalities of the web application,
one has to register into the system as a supplier. After a
successful authentication, suppliers can create new cargoes,
manage already listed cargoes, see the incoming offers, choose
one of the offers, get in touch with the winner. When creating
new cargoes, suppliers can upload an image, choose the pickup
and delivery locations using an interactive map or specify other
details related to the cargo.

B. Driver

Driver users have to use the mobile application to access
the system. After authenticating themselves, they will be able
to browse the available cargoes, check their details, place an
offer on them, manage the offers, register vehicles into the
system and manage these vehicles. After delivering the cargo
in real life, they can mark it as delivered, which will enable the
rating possibility for the cargo owner. The placed ratings are
modifiable later. In case a driver has multiple accepted offers,
they can choose to deliver all of them together. Since the
transporter vehicle can be loaded with multiple cargoes at the
same time, there are multiple combinations for the pickup and
delivery locations. Using the mobile client, drivers have the
possibility to generate a route, which contains these locations
in an optimal order, so that the driver can transport the cargoes
in the least amount of time.



C. Guest

In the system the scope of guests is minimal, as this role
serves only as a way for users, that are new to the platform to
look into the benefits of the application. Although guests are
able to browse the available cargoes, nothing more. However,
the possibility of creating a new user or login into their account
always exists.

III. THE SOFTWARE SYSTEM

The three main components (see Fig. 1) of the system are:
a server developed with Spring framework [6], a React.js [7]
web client application and a mobile application created with
React Native [8]. The data of the system are persisted into a
MySql relational database.

A. Server

The server application follows the N-tier architecture, hence
the data management, the business logic and data exposure had
been separated. The components are structured into separated
layers, therefore the architecture is flexible, the code became
robust and clear. The layered architecture reduces dependen-
cies between different tiers, hence improves their testability
and enables them to hide their implementation.

PresentationLayer

API-layer

BusinessLogicLayer

PersistanceLayer

Mobile client Web client

CargoController UserController BidController TruckController RouteController

CargoService UserService BidService TruckService RouteServiceImageService

CargoRepository UserRepository BidRepository TruckRepository

Database

REST endpoints

use use

Fig. 1. The multilayer architecture used by the server.

There are three different layers, the API layer, which
receives the incoming requests and builds the response, the
service layer, where the business logic happens and the persis-
tence layer, where the data management is implemented. The
layers are closed: each layer communicates only with adjacent
layers.

1) Data model and persistence layer: The domain model
classes used in the system and their properties are visible
on the 2nd image. The main entities are the Cargo, User,
Bid and Truck. They all inherit from BaseEntity and
AbstractModel abstract classes an ID and a Universally
unique identifier (UUID). The ID is used as a primary key by
the Object Relational Mapping (ORM) framework to identify
the entity, while the UUID is used as a global identifier to the
entity.

Cargo

name: String
weight: Double
price: Float
details: String
available: boolean
deadline: LocalDate
from: Location
to: Location
imageInfo: ImageInfo
owner: User

User

email: String
firstName: String
lastName: String
password: String
phoneNumber: String
ratingAverage: String
role: Role
imageInfo: ImageInfo

Role

SUPPLIER
DRIVER
ADMIN
GUEST

Currency

RON
EUR
GBP
HUF

AbstractModel

uuid: UUID

boolean equals(Object o)
int hashCode()

BaseEntity

id: Long

Bid

price: Float
cargo: Cargo
driver: User
currency: Currency
status: BidStatus
truck: Truck

Rating

ratingScore: Float
description: String
dateSumbitted: LocalDateTime
ratedUser: User
submitter: User

Truck

brand: String
model: String
capacity: Integer
consumption: Integer
owner: User
imageInfo: ImageInfo

ImageInfo

url: String
publicID: String
width: Integer
height: Integer
size: Integer

Location

lat: Double
lon: Double
country: String
county: String
place: String

BidStatus

PENDING
ACCEPTED
REJECTED
DELIVERED

1*

1

*

1

*

1

*

1

*1

1

1

1

1

1

1

1

to
1

1

from
1

1

Fig. 2. The Domain Model used by the system.

Users are distinguished by their role. They may have the
following roles: Supplier, Driver or Guest. Users with Driver
role can create offers, which will be wrapped in Bid objects.
Every bid contains the following data: the offered price, its
currency, the cargo object, the driver that made the offer and
the truck the driver intends to use to transport the cargo. A
bid also has a BidStatus property of enumeration type, that
can have one of the values: pending, accepted, rejected and
delivered. The status of the bid plays an important role in the
application and it is determined by user actions.

In case of the Cargo, User and Truck entities there is
a possibility to upload images. Images are uploaded using
Multipart Form Data encoding type, the server stores them
in the Cloudinary [10] cloud service. When someone wants to
access an image, an access link to the image will be emitted.
This link and a few other attributes of the image are stored in
the database.

Since the server application is written with the help of
the Spring framework, Spring Data is responsible for the
persistence. It automatically provides implementation to the
Create-Read-Update-Delete operations on system entities, but
also gives the possibility of implementing custom database
operations.

2) Business logic layer: The business logic layer (or service
layer) is the part of the code, where the more complex
operations are done. Every entity in the system has its own
service, which performs the entity related business logic. An
entity service consists of a Java interface, which describes



the operations, and its implementation. Separating the in-
terface from its implementation was necessary because of
the Inversion-of-control (IoC) mechanism [2]. The separation
also made the code more testable and allowed the hiding of
the implementations. The functions of the service layer are
complex, because they contain a lot of validation and calls
towards the persistence layer. These functions are running as
transactions in order to ensure the valid state of the database.

3) API layer: The communication between the server and
the clients is realized through an Application Programming
Interface (API), which is published by the server. This API
follows the REpresentational State Transfer (REST) architec-
tural style [1]. The API of the server inherits the attributes of
the REST architecture: uniform interface, statelessness, client-
server communication, layered system. In order to access the
resources served by the REST API of the server, the clients
have to use Uniform Resource Identifiers (URIs).

The API layer (or controller layer) is the outermost layer of
the server. It is the layer that communicates with the client
applications. During this communication the data transfer
happens through the Data Transfer Object (DTO) pattern [3].
An entity could be translated into one or more DTO classes,
that embody different representations of it. The same DTO
classes are used both on server side and client side. When
sent from the server to the client or vice-versa, the DTOs are
being converted to JSON format. The API layer always calls
the business logic layer, which works only with model objects,
so before passing on the data, the API layer has to convert the
DTOs to model objects using assembler classes.

The various requests are being handled by controller classes,
following the Front Controller Pattern [16]. There is a sepa-
rate controller class for each entity, thus there are separate
base URLs too. In concordance with the REST conven-
tions, the most important base URLs are: /api/cargoes,
/api/users, /api/bids, /api/trucks.

B. Mobile and web client

The mobile and web clients are part of the presentation
layer. They provide an easy to use and user friendly graphical
interface, while they are communicating with the server in
the background. The web client is using the React.js frame-
work, the mobile client is using the React Native framework.
React Native enables the use of React.js in a native mobile
environment, thus the same declarative UI framework could
be used both on the mobile and the web client. As a result
the architecture of the client applications (see Fig. 3) is very
similar.

1) Components: React and React Native are both
component-based libraries, which means that UI elements are
structured into React components which are organized into a
component-hierarchy. Due to an application level convention,
the React components are class components.

Each component in the application has a single task (single-
responsibility principle [4]), thus, they are always further
divided into child components, as long as it makes sense.

api-client

components

BidApiClientCargoApiClientRouteApiClientTruckApiClientUserApiClient

ApiClient

React Native components

Server

User

interacts

REST API

Fig. 3. The architecture of the client applications.

2) Data model: The client applications mirror the domain
model of the server, and they also have the same DTO classes.
The use of DTO classes imply the need for assembler classes
that convert the DTOs to model classes used by the client app.

3) API client: In the client applications the only respon-
sibility of components is handling the user interface. State
mutations and updates are accomplished by the MobX state
management library [9]. Tasks that require complex logic
are performed in the MobX store classes. Networking and
communication with the server are done by the API client
layer. The API client layer is the direct consumer of the REST
API of the server.

The API client layer can be divided into two parts: the
BaseApiClient class and the ApiClient classes per entity.
The BaseApiClient class makes the API calls towards the
server. Using this base class every configuration operation can
be made in one place. It performs the API calls through its
functions, which comply to the used HTTP methods (GET,
POST, PUT, PATCH, DELETE). The functions expect the
relative URI path as parameter and in some cases (e.g. POST,
PUT) the request body. Each entity in the client applications
has its own ApiClient class, which contains methods for entity-
specific operations. These methods prepare the API calls,
perform the necessary DTO conversions and call the suiting
BaseApiClient function. This behaviour is implemented
using composition, the specific ApiClient classes have a ref-
erence to the BaseApiClient class. The ApiClient class
methods are called by the components.

IV. OPTIMAL ROUTE GENERATION

The optimal route is comprised of locations, that are either
pickup or delivery locations of the transportable cargoes. The
algorithm expects a few parameters to be passed: the cargo
the driver wants to begin the route with, the truck, which will
be used throughout the route and a Boolean value denoting
whether the driver wants to return to the starting point after
the end of the route.



The generation of the optimal route is a variation of the
Traveling Salesman Problem [17], which makes it an NP-
hard problem. In order to solve the problem, an evolutionary
algorithm is used: a custom version of the 2-opt algorithm [5].
As distance function the Euclidean distance function is used.

In case of the Truxi application, there are some constraints
the algorithm needs to satisfy.

• The geographical points of a cargo can be of two types:
pickup point and delivery point. The delivery point can
not be visited sooner than the pickup point, because one
can not deliver a cargo without picking it up first.

• The vehicle has an upper limit of capacity, thus can not
be overloaded at any moment of the route.

Taking these into consideration, the algorithm creates a list,
which contains the pickup and delivery points of the cargoes
in the order they should be visited. If the driver transports the
cargoes according to the order imposed by the list, they will
cover the shortest possible total distance during their tour.

Algorithm 1: The 2-opt swap function
Function TwoOptSwap(pointList, leftIndex,
rightIndex):

newPointList← ∅
leftOuts← emptyStack
for i← 1 to leftIndex do

newPointList.append(pointListi)
end
for i← rightIndex to leftIndex by− 1 do

point← pointListi
if point.type = DESTINATION &
point.pair /∈ newPointList then

leftOuts.push(point)
else

newPointList.append(point)
end

end
while leftOuts stack not empty do

point← leftOuts.pop()
newPointList.append(point)

end
for i← rightIndex + 1 to pointList.size do

newPointList.append(pointListi)
end
return newPointList

The algorithm starts with a randomized sequence of the
input points and keeps performing the 2-opt swap on it. The 2-
opt swap is implemented in a separate function (see algorithm
1). It has three parameters: the 2-opt-swappable list, a left
index and a right index. The 2-opt swap consists of copying
the list items from the beginning of the list to the left index,
then reversing the subarray between the left and right indices,
and lastly, copying the remaining items from the right index
until the end. When reversing the subarray, in case of every
delivery point it is checked if its pair, the pickup point of

the same cargo, has already been placed in the list. If not,
instead of being copied into the output list, they will be left-
out and pushed into a stack. After the reversed subarray was
added to the output list, the stack entries will be added next.
Because of the stack data structure, the left-out elements can
keep their original order in the output list. This ensures that
the first constraint of the problem remains satisfied. The left
index and the right index parameters take the values (i, j),
where i ∈ [0, n−1] and j ∈ [i+1, n), and n is the number of
points in the list. After each swap, the new total travel distance
is determined, and in case it is lower than the previous total
distance, the modified list takes its place. Before a new route
takes over the place of the old route, it has to pass the capacity
test, which checks whether an overload will occur during the
route, so that the second constraint stays intact. The swapping
stops, when the total distance does not improve anymore. After
the stop of the cycle, the resulting list will contain the optimal
route.

V. TECHNOLOGIES

A. Tools

The whole source code of the Truxi application is under
version control and the used version control system is Git. The
remote repositories are provided by GitLab. The development
of the application happened by respecting the rules of the
Scrum framework.

Using the GitLab CI/CD DevOps pipeline alongside Docker
and Docker-compose virtualization tools [11], the server and
the web client applications are continuously deployed to a
server machine. Therefore, the containerized server and web
applications are publicly available on the internet.

B. Server-side technologies

The server application is based on the Spring framework
and it is written in the Java programming language. The
configuration and start-up are supported by Spring Boot [6].
The controller classes of the API layer use the Spring Web
MVC package. The persistence layer depends on the services
of the Spring Data JPA subproject. As JPA implementation,
the Hibernate Object-Relational Mapping (ORM) framework
is used. The data of the server is persisted using a MySql
relational database. The database schema changes are managed
by the Liquibase library [13]. As build and dependency
management tool, Gradle [12] is used.

The images uploaded to the server are not stored in the
database, but in the Cloudinary cloud service. It provides a
Java integration [10], which is being used on the business
logic layer to forward the uploaded images from the server to
the cloud.

C. Mobile and web clients

The web and mobile clients were written using React.js [7]
and React Native [8], which are very similar libraries, thus
the mobile and web clients share a lot of similarities. Both
React and React Native are JavaScript libraries, developed by
Facebook. The React components, that are responsible for the



UI, were written in JavaScriptXML (JSX) language, which is
a JavaScript syntactical extension. Both the mobile and web
clients were written using the TypeScript language, which is
a JavaScript superset and makes the JavaScript code strongly
typed, making it more errorproof. As state management library,
the MobX framework [9] is used. The dependency injection in
the client application is done with the InfersifyJs library [14].
Forms throughout the client applications are made easier to
handle by the handy Formik library [15].

There are a few technologies, that differ between the client
applications. For routing, on mobile React Native Router Flux,
whilst on web the React Router DOM library is used. Semantic
UI React and React Native Elements were used as component
libraries.

VI. USING THE TRUXI APPLICATION

One can use the Truxi application only through the web or
mobile clients. Many of the features the application offers are
protected, so users have to register and authenticate themselves
first. The registration process is the same in both of the client
applications. The role of the user depends on which client
application the registration was made from. Suppliers can
register from the web client, drivers from the mobile client.

A. Web client
Suppliers are required to sign in into the application. After

the login, suppliers will be able to create new cargoes. They
have to specify the name, weight, and price of the cargo.
They have to enter the pickup and delivery locations (using an
interactive map). Optionally, suppliers can attach extra details
to the cargo, a transport deadline and an image.

Fig. 4. The web page that lets suppliers manage their own cargoes.

Suppliers can see their own cargoes (see Fig. 4), they can
modify or delete them. There are two types of cargoes in
the cargo list of the user: available and unavailable cargoes.
Available cargoes have no accepted offer yet. In case of
available cargoes, the owner can see the incoming offers,
whose price can not be higher than the original cargo price,
and can accept one of them. From then on, that cargo will be
considered as a not available cargo. The supplier can access the
private information of the selected driver by clicking on a not
available cargo. The private information was not available for
the supplier, just from the moment the offer was accepted and
they became business partners. With the help of this private
information (a phone number) the driver can be contacted.

B. Mobile client

Fig. 5. The list of available cargoes and the detailed cargo view.

When the driver opens the mobile application, a list view
of available cargoes becomes visible (see Fig. 5). The user
can inspect the details of every cargo. The cargo details also
unveil the lowest bid price to that particular cargo, even if
it does not belong to the logged in user. Nevertheless, on
that view, one can place bids on the cargo or can modify
the already placed bid. The locations can be inspected in the
local map application (Google Maps or Apple Maps in case of
iOS). However, the locations are not precise, just of indicative
nature. The precise GPS coordinates will be available for the
driver only in case his offer is selected by the cargo owner.

The navigation in the application is made easier with the
help of a drawer, which contains entries to majority of the
routes in the application. The bid manager screen also has an
entry in the drawer, where the driver can see every bid he
made. The bids are filtered by their status. There are different
actions available based on the status of the bid. In case of
pending bids, the driver can change the bid amount or can
remove the offer. In case of accepted bids, the driver can mark
the cargo as delivered and also rate the proficiency of the
supplier. In case of delivered bids, one can modify the rating
given. In case of rejected offers, only the removal of the offer
is possible.

Under the ”My Trucks” entry, drivers can access the vehicle
manager interface, where they can add new vehicles and
remove existing ones.

The ”Route finder” menu option takes the user to the opti-
mal route generation interface (see Fig. 6). Before accessing
the route, the driver has to specify the input parameters, by
selecting the first cargo of the route, the vehicle to be used
and whether he intends to return to the starting point of the



Fig. 6. The interface of the optimal route generator feature.

route after finishing it. Upon the answer arrives, the next screen
exposes the route. A list will be available with the locations in
visiting order. By tapping on them, the app brings up the local
map application with the precise coordinates of the selected
entry. Entries are differentiated through colors and icons.
Pickup locations are shown with a light blue background,
while destination locations with orange.

VII. CONCLUSION AND FUTURE PLANS

The paper presented the Truxi application, its architecture,
the used technologies and the features of the system. The
application is meant to solve a real-life problem of two groups
of people. It provides a way for cargo suppliers to conveniently
transport objects and at the same time ensures that freelancer
drivers can continue to make a living out of their job. The
service provided by the system links together transporters and
their clients. Suppliers can save costs by using the service
because drivers will keep on under-bidding each other in order
to own the lowest offer made. The lower the price the more
favorable the deal is for the supplier. Drivers can benefit from
the system by being able to make offers on various available
cargoes at the same time. They can also generate an optimal
route after they gathered a few cargoes to transport.

There are a few more features that are meant to be imple-
mented in the future.

• The distance function used in the optimal route generator
feature should be changed, the real geographical distance
between the locations should be used.

• Suppliers could have a feature, which lets them track the
whereabouts of the driver, who is transporting their cargo
at the moment.

• A price estimator would help the user to establish an
initial price for the new cargoes.

REFERENCES

[1] R. T. Fielding and R. N. Taylor, “Architectural styles and the
design of network-based software architectures,” Ph.D. disserta-
tion, University of California, Irvine, 2000. [Online]. Available:
https://www.ics.uci.edu/f̃ielding/pubs/dissertation/rest arch style.htm

[2] Inversion-of-Control. Ralph E. Johnson & Brian Foote (June–July 1988).
”Designing Reusable Classes”. Journal of Object-Oriented Program-
ming, Volume 1, Number 2. Department of Computer Science University
of Illinois at Urbana-Champaign. pp. 22–35. Retrieved 29 April 2014.
[Online]. Available: http://www.laputan.org/drc/drc.html

[3] Data-Transfer-Object pattern, Martin Fowler. [Online]. Available:
https://martinfowler.com/eaaCatalog/dataTransferObject.html

[4] Single-responsibility principle. Martin, Robert C. (2003). Agile Software
Development, Principles, Patterns, and Practices. Prentice Hall. p. 95.
ISBN 978-0135974445.

[5] 2-opt algorithm description. [Online]. Available:
http://pedrohfsd.com/2017/08/09/2opt-part1.html

[6] Spring Boot documentation. [Online]. Available:
https://spring.io/projects/spring-boot

[7] ReactJs official documentation. [Online]. Available: https://reactjs.org/
[8] React Native official documentation. [Online]. Available:

https://reactnative.dev/
[9] MobX official documentation. [Online]. Available:

https://mobx.js.org/README.html
[10] Cloudinary Java intergration official documentation. [Online]. Available:

https://cloudinary.com/documentation/java integration
[11] Docker virtualization tool, official documentation. [Online]. Available:

https://www.docker.com/
[12] Gradle build tool, official website. [Online]. Available: https://gradle.org/
[13] Liquibase database schema manager, official documentation. [Online].

Available: https://www.liquibase.org/documentation/index.html
[14] InversifyJS dependency injection framework, official documentation.

[Online]. Available: https://github.com/inversify/InversifyJS
[15] Formik form handler library, official documentation. [Online]. Available:

https://jaredpalmer.com/formik/docs/overview
[16] Front Controller design pattern, description. [Online]. Available:

https://www.tutorialspoint.com/design pattern/front controller pattern.htm
[17] Applegate, D. L.; Bixby, R. M.; Chvátal, V.; Cook, W. J. (2006), The

Traveling Salesman Problem, ISBN 978-0-691-12993-8


