
SoulMind: Interactive Platform for Domain-Specific
Data Analysis and Visualization

Alpár Cseke
Babes, -Bolyai University
Cluj-Napoca, Romania
csekealpar@gmail.com

István Király
Babes, -Bolyai University
Cluj-Napoca, Romania

kiraly istvan1@yahoo.com

Károly Simon
Babes, -Bolyai University
Cluj-Napoca, Romania
ksimon@cs.ubbcluj.ro

Szilárd-Gábor Mátis
Codespring

Cluj-Napoca, Romania
mszg92@gmail.com

Kincső Tüzes-Bölöni
Codespring

Cluj-Napoca, Romania
tuzes-boloni.kincso@codespring.ro

Abstract—The purpose of the application to be presented is
managing personal and historical data related to priests and the
parishes they served at. The website offers a comfortable platform
for recording new data or modifying preexisting entries. By not
only providing a wide range of filtering tools and presentation
options, but also a clear browsing experience, it aims to help
in revealing correlations in the dataset, encouraging and helping
research in the field.

The SoulMind platform also features a role-based multi-tier
user management system where new users must request access
via a registration form evaluated by the administrators of the
website. This is in order to protect the personal information
stored in the system and fine-tune its accessibility.

The paper presents the functionalities and the usage of the
application, introduces the reader to some implementation details
and provides a brief overview of the used tools and technologies.

I. INTRODUCTION

There are a number of thoroughly customizable CRUD
platforms (Create, Read, Update, Delete - the four essential
operations on data items) already available. Therefore it may
seem as there is no demand for new applications with the
objective of managing a collection of entities belonging to a
specific domain, but there is an aspect with limited support
within the available platforms. When dealing with Bad Data
[1], end products generally settle on underdeveloped features.

The software to be presented in this paper offers a solution
for one instance of this problem. It is a web platform developed
for the management of a still growing, rather valuable dataset
consisting of various information about the Protestant priests
of Transylvania from 1800 up to the present days. This dataset
exhibits multiple characteristics of Bad Data, such as missing
fields, improper formats, inappropriate data (entered in the
wrong fields), duplicate and/or misspelled entries. Due to the
sheer size of the data (more than a thousand entries, each with
more than a hundred different fields), manually cleaning it was
not an option.

Aside from making these records easily accessible and
extendable, there is a second key motivation behind the project.
The dataset offers unique information about its subject, making
it a valuable basis for different types of researches. The
SoulMind project aims to provide two different approaches
for this, both reliant upon an extensive data filtering module:
bibliographical research by searching for individual cleric
profiles and statistical research assisted by cumulative filtering
and displaying options.

There are two additional rather important requirements
of the application. First, the personal character of the data
necessitates secure access, which is accomplished by a multi-
tier user management system, where even the lowest tier
is evaluation-based and higher ranks offer wider access and
more functionalities. Second, because the target audience of
the website covers technologically less knowledgeable people,
the user interface was designed based on multiple UX (User
Experience) [2] research methods.

II. FUNCTIONALITIES AND USER ROLES

Since the managed data has a very personal nature, access to
it is broken down into multiple user roles. The section presents
the functionalities of the software platform, grouped by their
required minimum access level.

1) Visitors of the page: Users who are not signed in can
access only the main page containing the news stream and
the description of the project. The authentication operations
include the login, the forgotten password and the access
request forms. The latter only initiates the registration process,
the account’s creation depends on administrator approval.

2) Guest role: Logged in users with the Guest role are able
to access the searching pages and the chart creator too. When
searching priests, only the data shown on the result cards is
available, Guests cannot navigate to the priest profile pages.
However, they can browse the parish profiles with all existing
data, which is accessible from the placement list of priests or
from the dedicated parish searching components. The latter is
available both in list view and on a map interface.

3) Reader role: Reader or higher ranked users can benefit
from one additional functionality, the priest profile pages,
where all available personal data is present. The page is
reachable from the parish profiles and naturally from the priest
filtering page too.

4) Editor role: The role of Editors cover two more feature
groups. They can create new data sheets for priests or parishes
by providing some basic information about them, if these do
not exist yet; in case of matching data, they are redirected
to the already existing entity. On the profile pages, the edit
button will appear for Editors, making it possible to change
fields and manage files and pictures. On the priest profiles,
new family members, placements, qualifications, occupations
etc. can be added as well.



5) Admin role: The Admin is the highest user role. Aside
from all previous functionalities, they are granted access to
all user data (name, e-mail, role), and they are able to delete
existing accounts. However, their most important task is to
evaluate registration requests, which also takes place on the
admin dashboard. Admins can decide to accept or refuse new
accounts, and the user’s rank is also determined by them. They
can also include the reasoning behind their decision, which
will be part of the notification e-mail sent to the user. Last,
but not least, only these users can create, edit or delete news
on the main page.

6) Owner role: There is also an Owner rank. Its access
rights are the same as the Admins’, but there is only one such
account and it cannot be deleted, contrary to Admins.

III. ARCHITECTURE OVERVIEW

A. Overall architecture

The software platform’s architecture can be divided into
three well separated components. The bottom layer, a
document-oriented MongoDB database, is responsible for the
permanent data storage. This gets queried by a backend
server implemented in Golang, where the retrieved documents
are first encoded into intact models, then these are further
transformed into more compact transfer objects specific to the
request. These requests are received at the server through a
RESTful API [3], and are originating from the web client
implemented in TypeScript, built on the React web framework.

The overall architecture is based on the Model-View-
Controller (MVC) design pattern. With the three-layered ap-
proach’s view part being implemented in React, the application
can be also categorized as a Single Page Application (SPA),
meaning that the view layer is fully built up in the frontend
layer [4]. Even the business logic resides predominantly here,
while the backend server’s only tasks are about providing and
managing data.

The application is deployed in a multi-container envi-
ronment. The three components are communicating via an
internal network, while a fourth container - incorporating a
proxy server - exposes the platform to the outside world and
distributes requests between the web client (for static files)
and the backend server (for data access and manipulation).

B. Backend server architecture

The data access layer of the server is organized around gen-
eral interfaces. Currently, there is a MongoDB implementation
for these, but the possibility for extension or replacement is
given, because other layers do not contain any code specific
to the database.

Due to the frequent reinitialization of the production
database (see Subsection IV-A), the backend server also com-
municates with a MySQL database. These importing functions
are only ran at server startup and they batch process the data.
This database is not part of the end product, it was only used
in development.

Data transfer between the repository and controller layers is
realized by the internal entities of the model package, while the

RESTful API’s incoming and outgoing objects belong to the
DTO package. The usage of Data Transfer Objects provides
multiple benefits, among them are the reduction of message
sizes and quantities, the exclusion of unauthorized data and
the possibility of type conversions. They also streamline the
development of the web client by preselecting the required
data.

The detailed architecture is also visualized on the Fig. 1
component diagram.

C. React state management without a store

A distinct feature that determines the web client’s architec-
ture is the inclusion of the recently released Hooks API. Hooks
are functions by which a component can attach to the compo-
nent lifecycle. They offer solutions for both of React’s biggest
shortcomings. Classes are replaced by functional components,
thus events related to the same element are not scattered in
different lifecycle methods, but are grouped together by the
useEffect hook which triggers on data change. State manage-
ment is also simplified, global store-based libraries like Redux
or MobX are replaceable by useState or useReducer calls
[5] operating on immutable variables via pure functions. The
usage of these hooks makes the architecture of the frontend
component inherently simple, free of additional layers.

Developers are also able to create their own hooks, making
special logic reusable between multiple components. In the
project, among other uses, custom hooks help in structuring
the state for the asynchronous HTTP requests’ variables, such
as response, error and the loading’s phase.

IV. IMPLEMENTATION DETAILS

This section explains some unique problems and their
solution, granting an in-depth look into the development of
some functionalities and requirements of the project.

A. Steps of the data processing

The provided database was initially in Access, and it was
very poorly maintained. It exhibited significant differences
between the priest records regarding the available data quantity
and quality.

Due to this, the data had to be transformed into a more
usable format. The first step was converting the single-table
Access file into a relational SQL database, in order to cate-
gorize the data and better understand how it is built up. Then
the Priests and Parishes MongoDB collections were built up
from these tables.

The original database only contained explicit data about
priests, the collection of parishes was generated by an algo-
rithm that aggregated data from priests’ placements. Due to
the misspells present in the original database, this algorithmic
data propagation created multiple parishes with very similar
names. To prevent potential data loss, most of these could not
be algorithmically cleaned by the team, since many village
names only differ in one character from one another, bigger
towns often accommodate multiple parishes and some of the
original data fields contain additional information about the



Fig. 1. Components of the backend server and their interactions.

priest. Ultimately, the merging of the duplicate parishes and
the clarification of the priests’ biographical data will be done
by the Protestant institute’s librarians.

However, most of the parishes have coordinates, which were
retrieved and inserted by two Python scripts querying their
names using Google’s Places API with a location bias favoring
hits close to Transylvania.

B. Displaying and managing dates

The correct management of dates was essential, since the
searching components heavily rely on them. In the original
database these were saved as strings, and contained a vast
number of misspells, ambiguities and extra information. In
order to normalize them, a new structure was created, which
stores the year, month, day and original string values in differ-
ent fields. The transformation of the data is performed by an
algorithm exploiting multiple regular expressions, attempting
to recognize as many components of the date as possible.

The presentation of these dates on the web client is imple-
mented by two custom components, thus making the involved
custom logic easily reusable across the website. The DateInput
consists of four inputs for the four fields (one of them being the
legacy string or a comment), and of a conditionally appearing
error message. If any error is introduced while in editing mode,
committing the changes is not possible.

The DateDisplay component aims to present the dates as
precise as possible. If numeric values are present, a full or
partial date is returned. When mousing over these, the original
string value from the initial database is also shown in a popup
text-bubble. If the year could not be retrieved, this original
string is shown instead of the date. Finally, if that is also
empty, a No data message appears.

C. Custom chart designer

The data visualization is implemented with the Reaviz
package [7]. Its most prominent advantage, from the point
of view of the project, is that it utilizes the same data model
for all of its available charts. Therefore, data aggregation can
be realized in a simple and concise manner, independent of
the chart’s type. Another advantage of the library is that it is
opinionated, meaning that most of its design choices are made

internally, so the theming’s data-specific implementation is not
falling on the developer.

This data processing is implemented on the frontend, with
the combination of multiple functional operations such as
forEach, reduce, filter and sort. The underlying data model
received from the backend server only contains the ready to
use values, i.e. years instead of full dates and only the sizes
of different data sections. The data fields for the grouping and
aggregate values are selected by the user and are dynamically
accessed in the algorithm from these simplified entities.

The algorithm also features an optional unification of small
groups, which improves the comprehensibility of the chart. Its
threshold is also user configurable.

D. Automatic e-mail notifications

The application relies on Google’s SMTP (Simple Mail
Transfer Protocol) server for sending out notification e-mails
to admins in case of a registration request, to new users after
account approval or refusal, and when changing password.
Custom data, such as user details, the password change to-
ken, and introduction or decision messages are dynamically
inserted into the HTML e-mail templates.

Since depending on an external service always carries some
uncertainty with itself, the server continuously monitors its
situation. Whenever an error occurs in e-mail sending, the
admin dashboard web page will show a notification, that the
maintainers of the application should be contacted. This error
disappears when new e-mails can be successfully sent again.

E. Security measures

The backend server and the frontend client both take mul-
tiple different precautions in order to realize data protection.

Through the use of DTOs, unauthorized clients cannot
access any restricted data, not even directly from the API. This
field-selection also encompasses leaving out internal identifiers
and timestamps from the DTOs, whose transmission to the
frontend client could cause potential security holes.

The backend’s router contains a custom interceptor for
filtering out unauthenticated senders. It can restrict access
based on user roles too if additional parameters are provided.
The navigation bar keeps the unavailable paths hidden, thus
making certain functionalities inaccessible. Similarly, the data



manipulation controls are hidden too, when they are not
applicable, such as the Edit button on the profiles or the article
operations on the main page.

The navigation paths listed via the custom GuardedRoute
wrapper function built around the react-router provided Route
component takes this a step further. The function receives the
variables necessary for the Route, namely the path and render
values, but also the user object encapsulating the data of the
logged in user and a list of permitted user roles. By the former
two, it can be determined if the Route component should refer
to the given path or to an error page. This way, unauthorized
pages are not accessible in the possession of the URL leading
to them.

Passwords are encrypted and salted multiple times. Effec-
tively, they can never leave the application server, since they
are not part of any outgoing DTO, and the proxy server
communicating with the outside world is not connected to the
database.

F. Responsive and clear UI

Creating an easy to use and intuitive user interface was one
of the platform’s key requirement. Multiple design plans for all
components of the future website were created, the selection
between these was made based on the remarks of the client
and on further UX research.

The SoulMind platform does not have an Android or iOS
application. It would have been only necessary if it relied on
some native functionalities of smartphones, such as camera
integration or location access. Instead, the user interface was
designed in such a way that its arrangement fits any screen
size from smartphones to widescreens.

The responsive interface and the underlying design was
mostly realized using the React-integrated version of the
Semantic UI (SUIR) package. The components’ size, color
and other visual attributes can all be configured through
optional constructor parameters, but in multiple cases these
were overridden by manually given CSS commands so they
complement the overall look better.

There were multiple other methods for realizing the respon-
sivity of the webpage. For example, the navigation bar has two
implementations, one containing only the menu options’ icons
without the labels. Between rendering these two components
the decision is made by SUIR’s computer/tablet/mobile only
selectors. Browsing on a tablet, the different cards of the
search and profile pages automatically stack into one column
instead of the usual two, by the Grid layout definer’s stackable
parameter. On mobile screens the main content is placed below
the auxiliary controls otherwise present on the left side of the
pages, while cards still show up in one column. The current
resolution is taken into account using the min-width and max-
width CSS media queries.

One essential difference between UX and UI (User Inter-
face) design is that the former is not only concerned with
the visual components of the page, but also considers the
usability and the convenience of the functionalities. There are
multiple small comfort features present in the web page, such

as the reset buttons near the double sliders, the real-time search
results, or the filter values’ and page number’s insertion into
the current URL. The latter is implemented so that specific
searches and results can be shared via the hyperlink.

To fine-tune the interface’s font types and colors, the SUIR
package was recompiled by using a library called craco, so that
the internal configuration files of SUIR became accessible.

V. TECHNOLOGIES AND TOOLS

This chapter briefly introduces the reader to the technology
stack of the application, followed by development methods
and tools used in the project.

A. Server-side technologies

For permanent data storage a MongoDB database is used
[8]. It is a NoSQL solution, which organizes the stored
records into schema-less collections. These documents are
syntactically similar to JSON. They consist of key-value pairs,
where the value can be scalar, a list or even an inserted
subdocument. Being document-oriented, it directly matched
the object domain of the server, thus simplifying the queries.

The backend server is implemented in Golang [9], a
performance and simplicity oriented language developed and
maintained by Google. Golang is most often compared to
the C language, since it does not feature classes, inheritance,
generic types or even exception handling try-catch schematics.
It is compiled, thus provides runtime performance and stricter
syntax checking, but also features garbage collection.

The RESTful API was built with the Gin HTTP web
framework, which pairs the incoming requests with their han-
dler functions from the controller. It is enhanced by multiple
middleware layers for session management, role-based access
control and customized logging. For configuration manage-
ment Viper is used, while the mongo-go-driver package acts
as a bridge between the backend server and the database.

B. Client-side technologies

The platform’s web interface is implemented in TypeScript,
a typed and compiled superset of JavaScript [10], and is built
using the React frontend framework [11]. React is component-
oriented, meaning that the elements of the user interface are
grouped and organized in components reusable across different
parts of the application, and even in other web pages.

As for pre-created components, the react-compatible Se-
mantic UI framework is utilized. The Axios library is re-
sponsible for sending HTTP requests to the backend server,
relying on a promise-based asynchronous system.

Creating the map of the parishes was made possible by
Leaflet, which retrieves the tiles required for assembling the
currently displayed map from the OpenStreetMap API.

C. Testing, version control and deployment

The backend server’s verification features both unit tests and
extensive API testing in PostMan. The web client is inspected
via snapshot testing, a technique reliant on mocks for isolating
components and checking if their behaviour unexpectedly
changes.



Version control is realized in Git. The git repositories
hosted on GitLab are also connected to CI/CD (Continuous
Integration and Continous Deployment) pipelines [6]. These
automatically execute a list of interdependent tasks on the code
pushed to the backend and frontend repositories, such as static
code analysis (with golangci-lint and TSLint), running the tests
and calculating the coverage, compiling the application and
creating system images with the built components.

A third pipeline is responsible for the automated deploy-
ment. The Docker images created by the other two pipelines’
last stages is accessed from GitLab’s registry and the individ-
ual containers are connected together by the Docker Compose
tool to be released in the test server.

VI. THE USAGE OF THE PLATFORM

Before signing in with an account, only the application’s
homepage and the usual authenticating operations, such as
registering (see Fig. 2), signing in or requesting a password
change are available. The website is translated to Hungarian
and English as well, and the selected language is saved
between visits.

The homepage (see Fig. 3) contains a short description and a
stream of news regarding the application and the community.
After logging in, administrators are able to create, edit (see
Fig. 4) or delete the articles. Similarly, all functionalities of
the website are distributed across different user roles.

Among the menu items, in the Search drop-down menu one
can choose to browse priests or parishes. Priests can be filtered
and target-searched by a broad range of different controls
present on the left side of the page (see Fig. 5). The paginated
search results on the right side respond in real time to any filter
changes. By clicking on the cards, the user is redirected to the
priest profile (if the account has authorization). The names of
the parishes are also clickable on these cards, leading to the
parish’s profile.

Searching parishes is also carried out by different filters:
its name, location and its minimum number of priests. There
are two ways to show the results, the first is similar to that
of priests’. Aside from the list view, the data can also be

Fig. 2. Registration page
with wrong input.

Fig. 3. The platform’s
homepage with articles.

Fig. 4. Article editing by
an administrator.

Fig. 5. Priest search page with filtering options and results.

displayed on a map as well (see Fig. 6). Here, parishes close
to each other are clustered into a number showing their count,
zooming in breaks these clusters down. Cards in the list and
the marker pop-ups can be clicked to navigate to the associated
parish profile.

The next selectable menu item takes the user to the chart
creator page. On this page (see Fig. 7) a wide range of
data visualizations can be easily created and customized
through multiple parameters and the aforementioned filtering
component. The most important of these options are the two
drop-down menus where the displayed data fields can be
selected. The first input specifies the main axis, the attribute
by which the data will be grouped, such as birthdate or
birthplace. In the second drop-down the value assigned to these
aggregated categories is given. This so-called secondary axis
can simply be the group’s size, but also can take different
averages such as the number of children or of placements.
Furthermore, the user can choose the type of the figure: pie,
bar or line chart. For the former two, three other options will
be available for sorting the data and keeping the visualization
clear (smoothing by aggregating or omitting small groups).
Due to the combinability of the multiple options, currently
630 different charts can be generated based on a dataset.

There are several navigation links within the website leading
to the profile pages. Both on priest and parish profiles, different
tabs are available in the sidebar, to partition the data into
categories such as general data, family, qualifications, place-
ments, occupations, path of life, literary works, files, pictures

Fig. 6. Parish search page with map view.



Fig. 7. Bar chart about the birthplace of priests active between 1918-2013, only groups larger than 4 shown.

etc. If the user has permission to edit, the priest’s profile can
be modified in the interface shown in Fig. 8. In particular,
the menu item presenting the priest’s life path generates a
chronological overview of the priest’s main life events from
the existing data.

The next menu option in the sequence is the Add drop-
down, where new priest or parish records can be created by
providing some initial information.

The last menu item, if authorized and present, leads to the
admin dashboard, where existing accounts are managed and
new registrations get accepted or rejected.

VII. CONCLUSION AND FUTURE PLANS

The main objectives of the project were all fulfilled. The
created platform provides the required functionalities for regis-
tering priests and parishes, as well as their searchability, while
achieving effortless usage through a clean user interface. The

Fig. 8. Editing placements of a priest.

registration-approval based multi-tier account system enables
detailed control over the available data.

The list of upcoming enhancements and fixes include the
creation of a map that compiles all the locations important in
the life of a priest, as well as the ability to save a priest’s
profile page as a PDF.

Another planned major functionality is introducing sugges-
tions for editing. Within this, users with a rank of at least
Reader could mark certain data fields as uncertain, or make
suggestions for a new value and give a justification for it.
These suggestions could be reviewed by users with a rank of at
least Editor. This would help priests registered on the website
contribute to their own or their acquaintances’ profiles.

A few minor technical fixes are also planned, such as
incorporating API tests into the continuous integration or
optimizing error propagation.

REFERENCES

[1] Q. McCallum, Bad Data Handbook, O’Reilly Media, 2012
[2] D. Pásztor, UX Design, Budapest: UXStudio, 2016
[3] Oracle reference documentation, What Are RESTful Web Services?. [On-

line]. Available: https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
[4] F. Copes, What is a Single Page Application?, Nov. 2018. [Online].

Available: https://flaviocopes.com/single-page-application/
[5] A. Ghezala You don’t have to use Redux, June 2019. [Online]. Available:

https://dev.to/anssamghezala/you-don-t-have-to-use-redux-32a6
[6] I. Sacolick, What is CI/CD?, Jan. 2020, [Online]. Available:

https://www.infoworld.com/article/3271126/what-is-cicd-continuous-
integration-and-continuous-delivery-explained.html

[7] Reaviz reference documentation. [Online]. Available:
https://reaviz.io/?path=/story/docs-intro–page

[8] MongoDB official website. [Online]. Available:
https://docs.mongodb.com/manual/

[9] Golang official website. [Online]. Available: https://golang.org/doc/
[10] TypeScript official webpage. [Online]. Available:

https://www.typescriptlang.org/docs/home.html
[11] React official documentation. [Online]. Available:

https://reactjs.org/docs/getting-started.html


