
Image Based Volume Estimation Using Stereo
Vision

Nándor Bándi∗, Rudolf-Bálint Tunyogi∗, Zoltán Szabó†, Eszter Farkas† and Csaba Sulyok∗
∗Faculty of Mathematics and Computer Science, Babes, -Bolyai University

RO-400084 Cluj-Napoca, Romania
†Codespring

RO-400664 Cluj-Napoca, Romania
nandor.bnd@gmail.com; rudolftunyogi@gmail.com; szabo.zoltan@codespring.ro;

farkas.eszter@codespring.ro; sulyok.csaba@cs.ubbcluj.ro

Abstract—The current paper proposes an image based volume
estimation method and its implementation. Firstly, the camera
positions are estimated based on the feature points found on the
images using bundle adjustment. Using the camera positions, a
dense point cloud is generated, onto which a Poisson surface and
a convex hull is fit. Afterwards an intersection of the surfaces is
determined and refined. Finally, the volume of the final surface
is calculated, and converted to metric scale using a reference
object.

The implementation of the software system consists of two
main parts: an Android client and a server. The server is
responsible for image processing whereas the Android client
application provides the user interface for taking pictures, and
rendering the three-dimensional reconstruction of the scanned
object as a result.

Index Terms—3D reconstruction; bundle adjustment; point
cloud processing; stereo vision; volume estimation

I. INTRODUCTION

Nowadays computer vision-aided solutions are becoming
more and more common. Their usage has appeared in many
industries, for example in agriculture, healthcare and the
automotive industry [1]. In most cases, a repeatable task is
automated, ranging from estimating the amount and quality of
produce in agriculture to autonomous driving.

In this paper a stereo vision based volume estimation
method is presented. Previous solutions for volume estimation
are often restricted to specific objects. Past works mainly
approach the problem of food volume estimation. W. Lo,
Sun, Qiu, and B. Lo [2] tackle the issue using deep learn-
ing view synthesis from a single depth map. Hassannjedad
et al. [3] estimate food volume using video capture and
interactive segmentation. Dehais, Anthimopoulos, Shevchik,
and Mougiakakou [4] estimate the volume of food portions
using two view reconstruction. Xu, He, Khanna, Boushey, and
Delp [5] tackle the issue of food volume estimation using a
model-based approach. Gao, Tan, Ma, Wang, and Tang [6]
combine multiple sensors during reconstruction and estimate
food volume. The proposed method is general in the sense
that it only assumes good illumination of the object, presence
of a visible texture on it and that it is located on a flat,
homogeneous surface beside a reference object.

Estimating the volume of an object proves to be challenging
in many respects: the first one is the three-dimensional recon-

struction of the object, and the second is the determination
of the exact metric scale of the reconstructed model. In
this project the three-dimensional reconstruction is performed
by stereo-vision based methods. Bundle adjustment [7] is
used to estimate the camera positions. Patch-based Multi-view
Stereo [8] is used to construct a dense point cloud based on
the estimated positions of the camera. Background noise is
removed using image segmentation. The convex hull of the
filtered cloud is used as a first approximation of the volume.
A Poisson surface [9] is fit to the dense cloud in order to refine
the previously obtained approximation. The determination of
the metric scale factor is performed by maximum-likelihood
estimation of the size of a reference object. The real volume is
determined by the volume of the refined surface and the metric
scale. The implementation of the presented method consists of
two parts: an Android application that aids the user with taking
the pictures and shows the result of the method, and a server
that performs the image processing.

II. VOLUME ESTIMATION

The estimation of volume is achieved via three-dimensional
reconstruction and metric scaling of the object. The proposed
method is based on a state-of-the art pipeline for three-
dimensional reconstruction that consists of:

• AKAZE feature-point detection and matching
• bundle adjustment
• patch-based multi-view stereo
• poisson surface reconstruction
AKAZE features are computed using OpenCV [10]. Camera

positions are reconstructed via bundle adjustment using the
previously mentioned feature-points and Bundler, an imple-
mentation provided by Snavely et al. [7]. Binarization using
Otsu thresholding, morphological closing and dilation are
used for segmenting the object from the background. Dense
reconstruction using Patch-based Multi-view Stereo is done
using PMVS2, an implementation provided by Furukawa and
Ponce [8]. Surface reconstruction is achieved using the Poisson
surface reconstruction implementation of Kazhdan, Bolitho
and Hoppe [9]. As an initial estimation the convex hull of the
reconstructed point cloud SPMV S resulting from PMVS2 is
used (see Fig. 1), however its use has many disadvantages.



Fig. 1. The convex hull of the recon-
structed point cloud

Fig. 2. Noise sensitivity of the convex
hull: a single outlier point drastically
changed the estimated volume

Fig. 3. The reconstructed Poisson
surface

Fig. 4. Volume refinement via refined
convex hull.

In the case of convex objects the volume of the convex
hull is representative of their volume, not so for concave
ones. Furthermore, convex hulls are very sensitive to noise,
as the presence of a single outlying point can increase the
estimation error significantly (see Fig. 2). In this section a
better estimation using the reconstructed Poisson surface is
proposed (see Fig. 3).

Given the object is wholly reconstructed the volume of its
convex hull is an upper bound of its real volume, and can be
written as

Vc = V + ε, ε ≥ 0 (1)

where V is the real volume and ε is the error of the convex
hull estimation. V can be estimated by approximating a binary
indicator function χ : C → {0, 1} that maps a point of the
convex hull to 1 if the given point is part of the object, and to
0 otherwise. The χ indicator function determines the ε error
factor as this is equal to the volume of the subspace of the hull
that is mapped to zero. The Poisson surface is an estimate of
the boundary of the object, and can be thought of as an implicit
approximation of χ. The surface is merely an estimate as it is
not always closed, the bottom of the object can not be observed
and reconstructed. The points above the surface can be mapped
to 0 and the others to 1. This method provides a better estimate
as its precision is limited only by the reconstruction precision
of the Poisson surface and the noise level of the convex hull.
Shadow spots can induce a significant amount of noise into the
dense point cloud SPMV S and increase the size of its convex
hull. The prior approach is not a good estimate in this case,
since the convex hull is not fit to the bottom of the object. The
point cloud SBA computed by bundle adjustment is less noisy
due to the fact that it is generated by AKAZE feature-points
that do not appear in these problematic spots. The subset of
points in SBA

PBA = { p | p ∈ SBA, p ∈ C (SPMV S)}

that are inside the convex hull of SPMV S results in a less
noisy convex hull which further reduces the ε error factor (see
Fig. 4).

III. METRIC SCALING

Metric scaling is achieved using an Aruco marker [11] as
a reference object. The size of the marker is determined by
maximum likelihood estimation of its corners. The maximum
likelihood estimation of a corner is the centroid of the recon-
structed corner samples. The centroid is further augmented by
assigning more weight to the samples that are visible on more
images since these are likely to be of higher precision.

IV. ARCHITECTURE

The software system consists of an Android client and a
backend server. The role of the Android client is to help the
user take photos and then upload the images to the web server
for processing. In addition, the user can use the Android client
to follow the progress of the image processing, and then view
the resulting volume and three-dimensional model. The second
part of the system is the image processing backend server. This
can be accessed via an API server written in Node.js.

A. Backend server

The web server is implemented in accordance with the
REST1 API standard, the role of which is to provide the
necessary endpoints for the Android client. The server is
composed of image processing services that communicate
through an ActiveMQ message broker. As the architecture of
the server is microservice-oriented, scalability is achieved by
running each service in a separate virtualized container, of
which additional instances can be launched on demand.

B. Android Client

In this section, the Android application is presented.
A project within the application encapsulates the images

taken and volume estimation result of the object. It is possible
to create a project within the Projects menu, for which the user
needs to enter a name, the metric size and identification of the
marker and the resolution of the images. After creating the
project, navigating to the main view displays an image similar
to Fig. 5. The name of the project and the number of images

1Representational state transfer



Fig. 5. After the first image is taken, the application indicates the amount
of displacement since the last image

taken are displayed in the upper left corner. Feature points
are counted and tracked during the taking of images. The
feature points are marked with blue dots on the display, and the
number of detected feature points is shown in the upper right
corner. These are Shi-Tomasi corners [12] as AKAZE feature-
points could not be tracked in real-time. These feature points
are only indicative to help the user track the movement of the
camera. After taking the first photo, the application helps the
user make the right amount of camera movement by drawing
the optical flow vectors. These connect the positions of the
feature points in the last and current images, the length of
which is also represented by colors. If the movement between
the images is not adequate, the vectors will turn red. The goal
is to keep the camera displacement within an optimal interval,
i.e. these vectors remain green. A timeline available within
the Status screen shows the progress and all the steps of the
image processing. Once the processing finished, the calculated
volume is displayed, which is also visible in the project view
(see Fig. 6). On the left side there is a list of previously
created projects, and on the right side are the results for the
current project: the name of the project is displayed, along
with the number of images and the volume of the object. The
resulting textured three-dimensional model is displayed on a
black canvas.

V. EXPERIMENTS AND RESULTS

The estimation accuracy of the proposed method was tested.
The hypothesis is that given enough pictures of an object
the presented method can estimate its volume. This section
presents the test environment, methodology and results. During
testing the objects were placed on a homogeneous flat surface,

Fig. 6. The list of projects is shown on the left side and the result of the
currently selected project is shown on the right side

Fig. 7. Representative objects for testing the presented method

with white background and lighting from above. The images
were taken in two different ways. In the first method, the
object was placed on a plate rotating at a constant speed, the
camera was in a fixed position, and the images were taken at
regular intervals. In the second method, the object remained
in a fixed position and the camera moved freely around the
object. In regards to the hardware, the server has an Intel®
Core™ i3-6100U CPU with two 2.3GHz cores and 8GB of
RAM. A Xiaomi Redmi 5 type phone with a 12MP camera
and a Canon Powershot G16 type camera were used to take
the test images.

The tests measure the effects of modifying the following
principal variables:

• number of images
• image resolution
• quality of the object

The number of images ranges from 6 to 100. The images have
a resolution of 2048×1536, 3200×2400 or 4000×3000. The
quality of the object is ordinal in nature, indicating how the
object meets the initial assumptions. Five objects of different
qualities were tested and a total of 384 tests were completed.
The number of test cases for objects is relatively evenly
distributed. Within these test cases, the number of images
and the different image resolutions are also evenly distributed.
The results of the estimation of volume of three representative
objects that are different from each other in terms of quality
are presented below (see Fig. 7).

Object 1: Celery root

The first object is the root of a celery, the surface of
which is textured, consequently it can be easily and accurately
reconstructed due to the large number of feature point matches
as can be seen in Fig. 8. and 9. Fig. 10. shows the relative

Fig. 8. The relative error of the hull is
0.28, after refinement it is reduced to
0.04

Fig. 9. The final textured model



Fig. 10. The relative error decreases
with increasing number of images and
higher image resolution

Fig. 11. The mean and standard devi-
ation of the relative error is decreasing
with the increasing number of images

estimation error as a function of image number and image res-
olution, respectively. The relative error is greatly influenced by
the number of images and the number of feature point matches.
The relative error correlates negatively with the number of
images (ρ = −0.8, p < 0.001, n = 62) and with the number
of feature point matches (ρ = −0.8, p < 0.001, n = 62)
where ρ is the correlation coefficient, p is the p-value, n
is the sample count. Considering the non-linear relationship
of the variables, Spearman correlation was calculated. The
number of feature point matches is largely influenced by the
number of images (r = 0.9, p < 0.001, n = 62) because as
the number of images increases, the reconstructed cameras
are more closely positioned, which results in more common
feature-point observations (see Fig. 16). The use of images
with higher resolution also results in the detection of more
feature points, decreasing the error. If the number of images
is less than 20, a relative error of 0.86 is to be expected.

The accuracy increases between 20 and 40 images, the
expected error is 0.30, but the method is unstable as the
standard deviation of the error is 0.32. In the case of larger
image numbers, the accuracy of the method significantly
improves, as the mean of the error and its standard deviation
decrease to less than 0.05 (see Fig. 11).

Object 2: Box

The second object is a box of medium quality, as its surface
is less textured and partially reflective. As a result of this, the
number of feature point matches is less, which makes the result
more inaccurate and unstable (see Fig. 12).

Fig. 12. The error also decreases
exponentially

Fig. 13. The mean and standard de-
viation of the error are larger than in
the case of the first object

Fig. 14. The estimation is inaccurate
and unstable

Fig. 15. The error mean and standard
deviation increase significantly

The relative error is still negatively correlated with the
number of images and feature point matches (ρ = −0.79, p <
0.001, n = 94), and (ρ = −0.78, p < 0.001, n = 94)
respectively. Compared to the previous object, on average the
error mean and standard deviation increased by 0.05 and 0.04,
respectively (see Fig. 13).

Object 3: Angel statue

The third object is an angel statue, which is of poor
quality, as there is little texture on its surface and there are
unobservable gaps at its bottom. The correlation between the
error and the number of images is negligible (ρ = −0, 24, p <
0, 05, n = 106). Compared to the previous object, on average
the relative error is bigger by 0.28 and its standard deviation
by 0.09 (see Fig. 15). Due to the small baseline between
the cameras and the small size of the object an increasing
tendency of the error in the case of higher image count can
be observed (see Fig. 14). Another significant source of error
are the imperceptible gaps on the bottom of the object. In the
absence of a reconstruction, the method estimates the bottom
of the object to be convex, and consequently the estimated
volume becomes bigger.

Running time

The parallelization of feature-point identification, matching
and image segmentation significantly reduces the execution
time. The running time of the method is linear in terms of the
number of images, in the case of higher image resolution, the
rate of increase of the running time is higher (see Fig. 17). As
an example for 100 images with a resolution of 2048×1536,
the execution time is 446 seconds, whereas in the case of

Fig. 16. The number of feature point
matches increases with the number of
images and higher image resolution

Fig. 17. Execution time grows lin-
early with respect to the number of
images



TABLE I
VOLUME ESTIMATION ACCURACY

Relative error
Object Mean Std deviation Min Max n
Celery root 0.033 0.032 0.003 0.129 28
Box 0.095 0.115 0.002 0.473 46
Porcelain figurine 0.481 0.294 0.077 1.000 30
Angel statue 0.598 0.261 0.099 1.255 56
Glass 0.879 0.247 0.074 1.000 26

TABLE II
EXECUTION TIME

Average Running Time (seconds)
Object 2048× 1536 3200× 2400 4000× 3000
Celery root 122 234 399
Box 136 267 398
Porcelain figurine 87 192 258
Angel statue 89 216 258

4000×3000, with the same number of images, the running
time is 1319 seconds.

Summary

During testing the efficiency, accuracy, and limitations of
the method have been analyzed. The method is robust for
high-quality objects with an accuracy of more than 90% given
adequate number of images and resolution. Accuracy for ob-
jects with non textured and imperceptible parts is significantly
reduced regardless of the number of images or their resolution.

Table I summarizes the accuracy of the estimation of the
objects, assuming the number of images is acceptable, that
is at least 30. The objects are listed in decreasing order with
respect to their quality. Table II summarizes the execution time
of the presented method. The expected running time is 221
seconds with the testing hardware, although this depends on
the number and resolution of the images. In the case of the
glass, the running time is not indicated as the processing was
not completed due to the low number of feature point matches.

VI. CONCLUSIONS AND FUTURE WORK

A method has been presented which, based on modern
reconstruction techniques, is able to estimate the volume of
certain objects with at least 90% accuracy if the necessary
conditions are met. Additionally, an application that aids
the user with taking the pictures, communicates with the
centralized server, informs the user in real-time about the
state of the image processing, and then displays the estimated
volume together with the reconstructed object, has also been
presented.

This method can be improved in many ways. Segmentation
can be improved with the help of object recognition algo-
rithms, so the estimation could work robustly in the case of
images that contain a complex background. The reference
object could be omitted using sensor fusion methods that
can estimate the position of the camera on a metric scale
(Extended Kalman filter, Visual inertial odometry) [13]. It is
important to mention, that these methods could only be applied
if the estimate they give is sufficiently accurate, because

as the scaling problem is poorly conditioned, any detection
error would have a significant effect on the final estimation.
The reference object can also be omitted in the case of a
closed system, where images are taken by several calibrated
cameras in fixed positions. The application could provide a
more immersive user experience, for example by re-projecting
the reconstructed model using the Aruco-marker.

REFERENCES

[1] R. SZELISKI, COMPUTER VISION: algorithms and applications.
SPRINGER NATURE, 2020.

[2] P. W. Lo, Y. Sun, J. Qiu, and B. Lo, “Food volume estimation based
on deep learning view synthesis from a single depth map,” Nutrients,
vol. 10, p. 2005, 12 2018.

[3] H. Hassannjedad, G. Matrella, P. Ciampolini, I. D. Munari, M. Mor-
donini, and S. Cagnoni, “A new approach to image-based estimation of
food volume,” Algorithms, vol. 10, no. 2, p. 66, Oct 2017.

[4] J. Dehais, M. Anthimopoulos, S. Shevchik, and S. Mougiakakou, “Two-
view 3d reconstruction for food volume estimation,” IEEE Transactions
on Multimedia, vol. PP, pp. 1–1, 12 2016.

[5] C. Xu, Y. He, N. Khanna, C. J. Boushey, and E. J. Delp, “Model-
based food volume estimation using 3d pose,” 2013 IEEE International
Conference on Image Processing, 2013.

[6] J. Gao, W. Tan, L. Ma, Y. Wang, and W. Tang,
“Musefood: Multi-sensor-based food volume estimation on
smartphones,” CoRR, vol. abs/1903.07437, 2019. [Online]. Available:
http://arxiv.org/abs/1903.07437

[7] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism,” ACM
Transactions on Graphics, vol. 25, no. 3, p. 835, 1 2006.

[8] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view
stereopsis,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 32, no. 8, pp. 1362–1376, 2010.

[9] H. Hoppe, “Poisson surface reconstruction and its applications,” Pro-
ceedings of the 2008 ACM symposium on Solid and physical modeling
- SPM 08, 2008.

[10] Official opencv documentation. [Online]. Available:
https://docs.opencv.org/2.4/

[11] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, no. 6, p.
2280–2292, 2014.

[12] J. Shi and Tomasi, “Good features to track,” Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition CVPR-94,
1994.

[13] J. Civera, A. J. Davison, and M. M. M. José, Structure from motion
using the extended kalman filter. Springer, 2012.


