
Offline Microcontroller Network Based Monitoring
System with a Configurable Sensor Set

Roland Hobaj
Codespring

Cluj-Napoca, Romania
hobaj.roland@codespring.ro

Csaba Sulyok
Babeş-Bolyai University
Cluj-Napoca, Romania

csaba.sulyok@gmail.com

Abstract—The accessibility of information is a key factor
in the progress of modern businesses. The Internet of Things
technological paradigm presents new possibilities and challenges
with regards to optimization and monitoring of production
workflows. The current paper presents a configurable monitoring
system for automation of startups and agricultural companies.
The software provides a management/monitoring solution for
enterprises running in lack of Internet connections; it allows
the attachment of microcontrollers with configurable sensor sets.
The project also contains a mobile client aimed at wireless system
configuration and monitoring. We demonstrate the application by
tackling real-world problems from the apiary industry.

I. INTRODUCTION

Smart devices and equipment influence many areas of
modern day living [1]. The fundamental advantage of Internet
of Things (IoT) systems is the ability of the many small
components to interact with each other via a local or
global Internet connection. This gives the opportunity to
measure, process and optimize environmental indices. With
this technological paradigm, enterprises manage to redesign
business processes and factory workflows [2], [3]. IoT systems
therefore gain noticeable attention and acclaim from a wide
range of industries.

A common design standard for microcontrollers is
accomplishing one exact assignment, in contrast to
microprocessors with general purpose usability. Ordinarily,
microcontroller units (MCU) gather information via a specific,
rigid sensor set. Data collected from the measurement
instruments is processed and forwarded to other components
of the overarching system. Microcontrollers must serve
real-time feedback to events in case of predefined rule
violations.

Taking the cost of the enterprise software design and
development into consideration, a full automation for startups
or young firms may prove a cumbersome investment. In
case of agricultural companies, the usual location of target
systems–remote fields–also presents a drawback: the lack of
a stable Internet connection. A potential solution for those
businesses can be an offline monitoring system with reusable
MCUs and configurable sensor sets.

This paper aims to demonstrate the implementation of the
SenseIT project1. A React Native [4] mobile client provides

1Project hosted open-source at https://gitlab.com/senseit

the opportunity for users to browse and configure available
microcontrollers in the local network. Online MCUs are
discovered by a central master Node.js [5] server, which
manages a user-defined sensor rule list. Data gathering,
real-time events and their handling is made possible by the
connection of an arbitrary number of either Particle Photon [6]
or Raspberry Pi 3 [7] devices.

II. MOTIVATION

This section presents the central motivation of the project.
The main aspects may be summarized in the following three
topics.

A. Digital business

The Internet of Things is widely praised as the fundamental
technological paradigm of the imminent Fourth Industrial
Revolution [2], [3] (Industry 4.0). This innovation generates
the transformation of modern living systems like business,
health care, education, etc. Gartner [8], an acknowledged
management consulting firm, estimates about 20 billion
devices connected to the Internet by the year 2020, with
the percentage of digital businesses related to traditional
enterprises rising to 65%. In the Industry 4.0, the accessibility
of information and knowledge is a demanding aspect of
success for modern companies [2]. The diversity of IoT system
applications and a wide collection of smart devices can make
it challenging to identify the business values [8].

The information gathered by microcontrollers and sensors
is processed by a software system. The cost of software
development for personalized aims can present a barrier for
startups and young firms in becoming digital businesses. The
SenseIT project is a general-purpose IoT software in which
clients can configure the system with various number of
Particle Photons and Raspberry Pis equipped with dynamic
sensor sets. Thus the entrepreneur manages to avoid the
expenditure of software development during the automation of
the production workflow. There is no single industry branch
for MCU maintenance; we instead propose a generalized
approach, tested and exemplified through apiary use cases.

B. Exchangeable sensor sets and MCUs

Through the growing process of a startup, the monitoring
and information gathering requirements are volatile. A

https://gitlab.com/senseit


Beehive Beehive Beehive

Notifications

Honey 

Heat sensor Distance sensor Distance sensor Distance sensor

Fig. 1. Beehives with distance sensors

potential solution for an apiary with a modest number
of beehives would be the software system equipped with
distance sensors wired to a Particle Photon microcontroller
(see Figure 1).

Beehives are observed by sensors, notifying the apiarist
when one becomes unsealed. A recurring task in apiary
management is bee treatment with a special smoke against
the external parasite Varroa destructor [9]. This procedure is
performed twice a year: once in the spring and again during
the autumn. The application of smoke has to be repeated after
two weeks during the treatment process. The software system
gives the opportunity for users to set up triggers and create
reminders. When the apiarist opens up the beehive for the first
operation, he/she gets a notification on their smartphone, and
the application provides the possibility to set a reminder to
repeat the treatment. The created reminder event appears on
the native calendar of the phone.

Another possible use case addresses the long term storage
possibility of honey, due to its chemical properties. Honey
crystallizes after a given time depending on its type; the
melting point of its crystallized form is approximately
40◦ C [10]. Overheating degrades the quality and destroys
beneficial enzymes, or caramelizes the sugar. In order to pack
honey for sale, it undergoes a carefully controlled heating
process. To prevent overheating, the system can turn off
the electrical heat source when the temperature reaches a
threshold. With a heat sensor in the honey barrel acting as
input, and the electrical interrupter connected to the Photon
as the output, the system preserves the content at a narrow
optimal temperature interval.

The presented scenario and topology provides an intuitive
sample for the practical implementation of the project, but
it can be configured uniquely based on diverse production
workflow requirements. The system may also be scaled up in
case of overarching company growth, since the master server
is able to serve a large number of microcontrollers.

C. Offline monitoring system

Although project members have to operate in the same
local network, the project serves data without an explicit need
for an Internet connection. The components of the system

 Central Master
Server

Particle Photon
Slave Server 1

Particle Photon
Slave Server n

Raspberry PI 
Slave Server 1

Raspberry PI 
Slave Server m

Sensor

Sensor

Sensor

Sensor Sensor Sensor Sensor

Sensor

Sensor

Sensor

Cross-Platform Mobile Application

Sensor

Fig. 2. SenseIT Project Architecture

communicate with each other wirelessly, except the connection
between microcontroller and sensors.

Offline functioning is advantageous in working fields
without phone signal or Internet access. In order to gather
different types of honey, the beehives are placed on regularly
moving trucks, decreasing the feasibility of stable online
access even more.

From a security perspective, offline activities are less
vulnerable. Besides (or perhaps due to) the increase of the
number of online devices, Gartner [8] predict significant
increases in the severity and occurrences of Distributed
Denial of Service (DDoS) attacks within the next years. The
Internet of Things introduces various security challenges [1]
by reason of expanding the traditional Internet with ”things”
communicating with each other. The sensor data protection is
a lower priority task in software security, because any outsider
sensors may measure the same values. A more essential issue
is the sensor privacy, which describes the events in which the
collected data is used.

III. ARCHITECTURE AND IMPLEMENTATION

The SenseIT project is divisible into three isolated
components (see Figure 2): the central server, the arbitrary
number of microcontrollers equipped with sensors (these
may be Particle Photons or Raspberry Pis), and the mobile
application. The central server is able to handle more than
one microcontroller: the MCUs are shown numbered from 1
to n or m, depending on the microcontroller type.

The inter-component communication uses the HTTP
protocol and the endpoint design follows the REST
(Representational State Transfer) architectural style [11]. As
already mentioned, the master server advertises its presence on
the local network, thus the mobile application may discover
it automatically. The Particle Photon and the Raspberry Pi
deploy an mDNS protocol implementation as well, thus the
central server discovers the working slave servers. Although
native push notifications would be a plausible solution for
presenting changes in the environment, they are served
by a third-party server, making an Internet connection



Node.js Master Server

Router
Photon Controller

Server Controller

Event Controller

Raspberry Controller

Response
Handler

Device REST
Controller

Data Access Layer

Response
Handler

Fig. 3. Node.js master server architecture

indispensable. Therefore the notification system of the SenseIT
project is based on the polling mechanism: the mobile client
periodically queries the events from the master server, which
publishes requests to the online microcontrollers.

A. Central Master Server

The central server is a Node.js lightweight process for
administering microcontrollers and sensor rules. The server
advertises its presence on the local network via the multicast
DNS (mDNS) [12] protocol, thus the mobile application
discovers it without user configuration. The main benefit of
this protocol is IP address transparency: it discovers names
by IP message, sent to the members of the network. Target
processes which are subscribed to the mDNS advertising,
multicast a message with their own IP address.

The components of the master server application are shown
in Figure 3. The Router module handles the requests from the
mobile clients, and forwards them to the appropriate controller.
The controllers have permission to manipulate the information
in the database through the Data Access Layer. They are also
responsible for sharing the user defined information with the
MCUs, assisted by the Device REST Controller. For instance,
when the user uses a mobile phone to create a sensor rule for
a Photon, the request is processed and sent by the Router to
the Photon Controller, which stores the data and forwards it
to the MCU. The Device REST Controller provides a general
RESTful API and is used for communication with both types
of microcontrollers. This architecture allows easy integration
of other smart devices (e.g. Arduino) by the implementation
of a new slave server communication through the given API.

The user-defined sensor rules and the microcontroller
configurations are persisted in a MongoDB [13], [14] database
system. The Mongoose Node.js library provides the possibility
of model scheme creation and management with basic CRUD
operations. The project uses three essential persistent entities:

• ServerModel - server name and port configurations;
• DeviceModel - responsible for sensor rule storage;
• EventModel - contains the events triggered in the system.

Device Controller

SetRule

Router Sensor Rule Storage Event Storage

Create Rule

Event
Triggered

Store Event

Query Events

Triggered event list

Master Server Slave Server

Sensor

Event handling

Set sensor
rule

Event polling

Fig. 4. Event triggering sequence diagram in Photon slave server

B. Particle Photon Slave Server

The Particle [6] is an all-in-one IoT platform from the
physical hardware to the cloud. Their devices are provided
with built-in connectivity components, such as WiFi chips or
cellular modules for communicating the central Particle Cloud.

The Photon device is selected for the SenseIT project mainly
because of its integrated Broadcom 802.11b/g/n WiFi chip,
essential in our wireless communication system. The modest
size of the Photon restricts its resources: it contains a 120 MHz
ARM Cortex M3 processor, 1MB flash memory, 128KB RAM,
and 18 mixed-signal general-purpose input/output (GPIO)
channels.

The Particle Build is a browser-based development
environment providing sofware development opportunities in
a platform-independent manner. It is not a requirement for the
microcontroller to be connected to the development device, the
new firmware may be flashed to it with the aid of the Particle
Cloud. Therefore, the development team and the device are
not required to share a physical location.

Accessing the Particle Cloud requires an ongoing Internet
connection; considering the motivation of the project, we run
the Photons in offline mode. The C++ firmware managing the
Photon therefore starts the device in “Manual” mode. This
allows the software to connect only to the local network,
omitting the cloud.

The central functionality of the C++ Photon slave server
is the sensor rule and event management. Figure 4 describes
the rule creation and event triggering processes. The Node.js
master server forwards rule creation requests from the mobile
client, and these are saved into the Sensor Rule Storage.
This container listens to environmental changes (e.g. a button
press, sensor touch, etc.) in the firmware loop function. When
an event is triggered, it is saved in the Event Storage. The
repository allows the central server to query and store the list
of occurred events.



C. Raspberry Pi

The Raspberry Pi is a well-known and widespread
single-board computer. Equipped with a 1.4GHz 64-bit
quad-core processor, the Raspberry Pi 3 B+ chosen for the
project is sufficiently robust to run the central master server
and an instance of the SenseIT Raspberry Pi slave server as
well. Therefore the entire project may be set up without a
general-purpose desktop PC or laptop.

The Raspberry SenseIT server has the same functionalities
as the presented Particle Photon server. The Node.js process
advertises the presence in the local network using the mDNS
protocol, whereby the central server is notified that a new
device is connected. The user-defined sensor rules are cached
in an in-memory database, allowing the central server to
handle both devices similarly.

D. Mobile Application

The mobile client is a cross-platform React Native
application with Redux as a state management container.
React Native is an open source JavaScript library created
by Facebook. It allows building native applications using the
React library for Android, iOS and the Universal Windows
Platform (UWP). The current version of the SenseIT mobile
application has been tested exclusively on Android devices.

The mobile client is composed of React components, which
communicate by props in case of parent-child relations, or
by reducers and actions in case of siblings. The props are
primitive variables with simple types, e.g. strings, numbers
or lambda expressions aiding an asynchronous callback
mechanism. Every component has its own state, in which its
data is stored, furthermore the application has a general state
as well. The latter is managed by the Redux container, and
it stores general data, e.g. the IP address of the connected
central server. Reducers specify the application state change
due to actions sent to the store.

The history stack creation is realized using the React
Navigation library. This community-driven third-party package
handles the transitions between screens and offers the ordinary
“look and feel” in Android or iOS.

IV. FUNCTIONALITIES

The central component of the mobile application is the event
list scroll view (ses Figure 6), which contains the actions
triggered in the system. The header allows general navigation
options; a user may access the reminders or the server
management page. When the application is not connected
to any SenseIT server, the scroll view is replaced by an
appropriate warning message.

The reminder list component (see Figure 7) presents the
saved events and the user-defined tasks. The customer can edit,
delete or mark the entries as finished. The application requests
authorization from the user to manipulate the native calendar
and the created tasks can be stored there with a reminder date.
On approach of the reference date, the client receives native
notifications instead of application-specific ones.

Fig. 5. Configuration
Page

Fig. 6. Event Page Fig. 7. Tasks Page

The server management tab lists the name and the IP
address of any previously connected servers, and provides
the possibility of discovering new ones. When the application
is connected to a central server, the tab lists its available
microcontrollers in the network, together with their IP
addresses. By selecting a device, the user can reach the Device
configuration page (see Figure 5).

Sensor rules are created on the settings page. The app
distinguishes between two type of rules: trigger events and
reminder events. To create a trigger event, an input and output
GPIO pin must be selected. Reminder rules only have and
input rule property, sending a notification to the client when
the event is triggered, so the user is able to create a task
from it. The application allows saving assignments from every
notification entry, not just reminder rules.

V. PERFORMANCE MEASUREMENT

A critical factor of any IoT system is the latency between
the sensor input and the system reaction, even under heavier
loads. This section outlines and demonstrates a performance
measurement evaluation of the project.

For testing, the Raspberry Pi slave server generates changing
numbers of events every second, simulation different levels of
burden. The Pi attaches the generation time as the description
of the created entry. As mentioned above, the master Node.js
server polls the event list from the online microcontrollers,
and saves event models in the database. With the help of
mongoExport, the created entries are dumped and analyzed
as JSON files.

The histograms described below are linked to 3 different
experiments, all showing the distribution of elapsed time
between event generation and persistence into the database.

In the first experiment (see Figure 8), the Raspberry Pi
generates 300 events per second for 13 seconds. The average
latency is measured as emph159 ms, showing an inferior
performance than push notifications would be capable of.
Analyzing an overlayed deduced normal curve, with reaction
times rarely reach above 200 ms.

Figure 9 presents the system in a slightly overburdened
scenario, with 600 events a second for 3 seconds. The average



Latency in ms

600.00400.00200.00.00

F
re

q
u

en
cy

300

200

100

0



Mean = 159.27

Std. Dev. = 89.335

N = 3,873

Page 1

Fig. 8. Latency when processing 300 events a
second

Latency in ms

2500.002000.001500.001000.00500.00

F
re

q
u

e
n

c
y

60

50

40

30

20

10

0



Mean = 1428.83

Std. Dev. = 448.288

N = 900

Page 1

Fig. 9. Latency when processing 600 events a
second

Latency in ms

10000.008000.006000.004000.002000.00.00

F
re

q
u

en
cy

80

60

40

20

0



Mean = 5186.04

Std. Dev. = 2734.936

N = 2,500

Page 1

Fig. 10. Latency when processing 1000 events a
second

latency increases to 1500 ms, with values not following a
standard normal distribution anymore. This amount of events
strains the system enough to disallow real-time reading, saving
and polling.

Finally, Figure 10 demonstrates the system in a highly
overloaded situation, with 1000 events per second for 3
seconds. The average latency rises to 5187 ms, showing a
tendency to further increase with time, as an example of
bottlenecking. A solution for decreasing the latency in the case
of this amount of data could be to not store the events in the
database.

VI. CONCLUSIONS AND FUTURE WORK

The SenseIT project offers customers an all-in-one digital
sensor monitoring system even in remote locations with
no Internet access. The main purpose of the project is
to build an IoT platform with changeable sensor sets for
digital businesses. With the aid of the Particle Photon and
Raspberry Pi microcontrollers, small companies can build a
personalized IoT platform for monitoring their production
workflow. Although multiple components and platforms are
involved, the project manages to minimize the configuration
process by using a self-advertising network protocol.

The system has been successfully presented as a general
monitoring system, with usage examples drawn from and
tailoring made specifically for the apiary industry branch.
A mobile user interface using modern cross-platform
technologies has been created for entrepreneur ease of use,
not targeted solely for qualified software engineers.

The project has been tested and presented only with the help
of the Particle Photon and the Raspberry PI microcontrollers.
However many other devices exist on the market, which could
be included into the project. A new MCU can be added
by implementing or adapting one of the existing REST API
implementations to communicate with the central server.

As another potential improvement, we propose extending
the project with analog sensors for higher resolution
information gathering. To derive usable data from analog

sensors, conversion function(s) would need to be provided by
users. E.g. in case of a temperature sensor the software would
have to convert the measured value from the range of 0 to 5
volts to Celsius or Fahrenheit.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communication Surveys & Tutorials,
2015.

[2] K. Schwab, The Fourth Industrial Revolution. Crown Publishing Group,
2017.

[3] I. Lee and K. Lee, “The Internet of Things (IoT): Applications,
investments, and challenges for enterprises,” Business Horizons, vol. 58,
no. 4, pp. 431–440, 2015.

[4] B. Eisenman, Learning React Native: Building Native Mobile Apps with
JavaScript. O’Reilly Media, 2015.

[5] M. Cantelon, M. Harter, T. Holowaychuk, and N. Rajlich, Node.js in
Action. Manning Publications, 2017.

[6] Particle Photon Official Documentation. [Online]. Available: https:
//docs.particle.io/photon/

[7] D. Guinard and V. Trifa, Building the Web of Things: With Examples
in Node.js and Raspberry Pi, 1st ed. Greenwich, CT, USA: Manning
Publications Co., 2016.

[8] M. Hung, “Leading the IoT,” Gartner, Tech. Rep., 2017.
[9] P. Rosenkranz, P. Aumeier, and B. Ziegelmann, “Biology and Control

of Varroa Destructor,” Journal of Invertebrate Pathology, 2009.
[10] K. Hamdan, “Crystallization of Honey,” Bee World, vol. 87, no. 4, pp.

71–74, 2010.
[11] R. T. Fielding and R. N. Taylor, “Architectural Styles and the Design of

Network-based Software Architectures,” Ph.D. dissertation, University
of California, Irvine, 2000.

[12] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet Requests for
Comments, RFC Editor, RFC 6762, February 2013. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6762.txt

[13] MongoDB Official Documentation. [Online]. Available: https://www.
mongodb.com

[14] M. Satheesh, B. J. D’mello, and J. Krol, Web Development with
MongoDB and NodeJS. Packt Publishing Ltd, 2015.

https://docs.particle.io/photon/
https://docs.particle.io/photon/
http://www.rfc-editor.org/rfc/rfc6762.txt
https://www.mongodb.com
https://www.mongodb.com

	Introduction
	Motivation
	Digital business
	Exchangeable sensor sets and MCUs
	Offline monitoring system

	Architecture and Implementation
	Central Master Server
	Particle Photon Slave Server
	Raspberry Pi
	Mobile Application

	Functionalities
	Performance Measurement
	Conclusions and Future Work
	References

