
Student Conference Electronic Submission System
Tamás Rozsnyai∗, Andrea Tamás∗, Ervin Erőss†, Barna Séra† and Csaba Sulyok∗

∗ Faculty of Mathematics and Computer Science, Babes, -Bolyai University
RO-400084 Cluj-Napoca, Romania

† Codespring
RO-400664 Cluj-Napoca, Romania

rozsthomas@gmail.com; tamasandii@gmail.com; eross.ervin@codespring.ro;
sera.barna@codespring.ro; sulyok.csaba@cs.ubbcluj.ro

Abstract—Scientific student conferences make it possible for
undergraduate students to present their research in front of
a committee of experts. These events usually use proprietary
online solutions for submissions and paper management, making
it difficult for students to move freely among them and always
have up-to-date information.

The SConES project aims to ensure a single online platform
for announcing and applying to student conferences. Although
the authors use Transylvanian conferences as an inspiration
point for functionalities, the proposed system may be used
on an international scale. The target audience of the project
consists of student conference organizers, applying students,
their supervising professors/tutors, and committee members. The
platform provides the opportunity to browse conferences and
view detailed data. Students/authors are additionally able to
view their submitted papers, follow status changes and edit their
personal information.

The current paper outlines the architecture of the project, the
communication between components, main functionalities with
technologies/tools used during development.

Index Terms—student conferences; regional conferences; elec-
tronic submission system

I. INTRODUCTION

Scientific student conference activities have long played
an important role in the lives of Hungarian university stu-
dents [1]. The first such conferences are organized in the
1950-1951 academic year, inspiring a rising tendency towards
further additions. They are often attributed the abbreviation
TDK (Tudományos Diákköri Konferencia, or Scientific Student
Conference). The first national event is held in 1955 with 109
presentations. In the following years, the event is divided into
separate sections based on the primary addressed discipline.
Since 2003, university students are able to submit student
conference papers in 16 different sections of the National
Scientific Student Conference (OTDK) [2].

The localized institutional student conferences provide an
opportunity for aspiring bachelors of science to present their
academic findings in front of a committee of experts. In
addition to the professional feedback, a competitive edge is
given to the events, as the best student papers have a chance
to advance to the national phase. Attending such an event may
be the first milestone in the academic pursuit of a student,
providing valuable routine, possibly motivating an entry into
higher academic circles, such as attempting an MSc or PhD
program [3]. Another advantage may be the development

of effective communication and presentation skills; these are
not only appreciated by higher academic officials, but also
by students, as evidenced by a physics conference organized
primarily by students in 1994 [4].

Besides numerous Hungarian cities, institutional TDKs are
also organized over the borders, e.g. in Transylvania, Upper
Hungary (presently a region of Slovakia), Transcarpathia and
Vojvodina.

In 2010 a new online system is set up to ensure the
smooth organization of the OTDK [5]. This system provides a
centralized way of submitting papers, registration and keeping
in touch. Most of the affiliated institutional TDKs also have
separate portals; e.g. Transylvanian conference venues in Cluj-
Napoca [6], Târgu Mureş [7] and Miercurea Ciuc [8], hosted
by different universities all have their own online system. The
separation of these both in style, layout and expected user
input makes student interaction difficult when advancing from
one conference system to another.

The current paper presents the Student Conference Elec-
tronic Submission System (SConES) project, whose main
inspiration comes from the diversity of institutional TDK
management. As the name of the project reflects, the goal
is to create a unified interface through which applications for
academic student conferences can be made. While the authors
draw inspiration from the Hungarian conferences mentioned
previously, general usability is kept in mind. The target au-
dience is student conference organizers, applicants, authors,
their supervising professors, mentors, tutors, and committee
members.

The aim of the project is to make it easier for users to
browse and apply for conferences. It also aims to provide a
consistent aesthetic event browsing on any device; a responsive
design provides mobile phone users a similar user experience
to that of larger screens. An important aspect addressed in
the design phase is maximal customizability; it is possible to
specify the deadlines of the different tracks/sections within
the events, to choose the scope and format of the abstract and
the article individually. Opting for a streamlined experience,
a “convention over configuration” approach is taken for these
settings: the system uses default built-in configuration for any
setting not provided. Students are allowed to submit papers
as well as select co-authors and supervisors. It is possible
to view the papers already submitted, and to download the



Guest user

Browsing conferences

Registration

Login

Listing upcoming/all conferences

Detailed view of the conferences

Fig. 1. Guest user functionalities

previously uploaded documents. Project functionalities also
include automated e-mail sending when certain events occur,
such as registration or successful submission of a paper.

Certain implementation ideas of the SconES project are
inspired by the EasyChair [9] website. Operating since 2002,
this platform is also used to advertise and apply for aca-
demic conferences, however it does not address the organi-
zational specifics of student conferences: much like license
theses/dissertations, the TDK research work and creative pro-
cess is accompanied by the guidance and assistance of one or
more supervising teachers and/or mentors.

The paper is structured as follows: Section II details the
implemented functionalities, Section III describes the archi-
tecture of the project, covering communication and the data
model. Section IV mentions the technologies and tools used
during development, followed in Section V by a description of
how the application works. Section VI provides conclusions
and opportunities for further improvement.

II. FUNCTIONALITIES

The SConES system provides a unified platform for TDK
organizers and participants, where applicant students can eas-
ily upload papers. Through the same portal, the conference
paper may be approved by the supervisor(s) and automatically
forwarded to any assigned committee members. Students can
follow the status changes of their submission.

The current chapter covers the implemented functionalities
for guests and registered users.

Guest user

As Figure 1 shows, a guest (not logged in) user can browse
the conferences, separating between only the upcoming ones
(i.e. those for which they can still submit a paper) and all
public conferences. The guest user has access to the conference
details on a dedicated customizable page. Here they can view
the extended description, the period, location, the sections
for which papers can be submitted, the submission deadlines,
etc. The guest also can register or log in, with a successful
registration prompting an e-mail notification.

Registered user

As shown in Figure 2, there are more functionalities for a
logged-in user. They inherit general functionalities of a guest,
but can also mark interesting conferences as “Followed”,
allowing quicker compact visualization in a later session.

Logged in user

Following conferences

Submitting papers

Keeping track of submitted papers

Editing profile

Browsing conferences

Detailed view of the conferences

Listing upcoming/all conferences

Fig. 2. Logged in user functionalities

They can also submit a paper for upcoming conferences,
providing a mandatory section/track. The tracks may specify
their own abstract length, the size and format of the paper, and
even the submission deadline. If these restrictions are not given
for a specific track, it inherits them from the conference. The
submission itself requires a title, a short description/abstract,
and attached the actual paper in the accepted file format. At
least one user must be marked as a “Supervisor” and other
users can be marked as a co-authors. Both types of involved
users are notified after paper submission via e-mail. Any pa-
pers where the authenticated user is a co-author or supervisor
shows up in a list on the profile page of the afferent conference,
and these can be listed separately as well. Information about
the submission and its current status is shown, taking on one
of the fixed values “Pending”, “Approved”, “Accepted”, or
“Rejected”. The paper itself can also be downloaded here.

The users can list and edit their personal data (e.g. name,
university). Changing these becomes relevant when a student
advances their year of study, changes their major or enrolls
in a different university. When submitting a paper, the ac-
tual/current data about the user is stored therein.

III. ARCHITECTURE

The SConES software system consists of two main parts
(see Figure 3): the client side boasts a web application usable
through a browser, and in the back there is a central server
responding to client requests, processing and storing data.

Fig. 3. Processes involved in the architecture, and the connections in-between



Controller

Service

Client Server

Repository Data

Action

Reducer

Store

Component

Fig. 4. Main components of both the client and server-side of the application

Communication between the two components is generally
performed via HTTP requests; additionally the server sends
e-mails to users through the external MailGun service.

Figure 4 shows the main components of the client and the
server in detail, emphasizing the relationships with each other.

The client side takes an alternative approach to the typically
followed MVC1 patterns: the “Component” is related to both
the “Store” and the “Action”–these are the interactive building
blocks of the website. Actions communicate with the server
and change the state of the Store through “Reducers”. Based
on the data stored in the Store, components change their status.

On the server side, the “Repository” layer is responsible for
database operations. It is called by the “Service” layer, which
is responsible for business logic and any data manipulation.
The “Controller” layer is located on the top level; it provides
the entry points accessible to the client web application, acting
as a proxy towards the services in the following tier. “Data”
contains the various DTOs (Data Transfer Object) and domain
model representations accessible throughout the backend.

Communication

Communication between the web client and the server takes
place through RESTful services. REST (Representational State
Transfer), described by Roy T. Fielding in his doctoral disser-
tation in 2000 [10], is an architectural model for implementing
client-server communication. Services that meet the described
principles are deemed RESTful. They make the data clearly
available through a uniform interface, implement client-server
based communication, and provide caching capabilities. They
are also characterized by statelessness; the server does not
store session information about any client. This statelessness
contributes to scalability.

On the client side, each component has its own directory.
Within the directories, the action folders contain the files
with the fetch calls needed to upload the component data.
With the results received from the server, an appropriate
type of action is created, to which the appropriate reducer
responds. The task of the reducers is to update the status of
the application based on received information.

The ASP.NET Core used on the server side supports
the creation of a web API that receives and serves re-
quests from the client using controllers. Each model is at-
tributed such a controller, with the implementation located

1Model-View-Controller

Conference

UserSubmission

Role

Track

User

Submission (paper)

1..*

Followed0..* 0..* 2..*

0..*

0..*

Fig. 5. Data model with entities and connecting relationships

in the EDU.CS.TDK.Controllers namespace. The class
is marked with the [ApiController] and [Route()]
attributes, mapping incoming requests to controller methods.

The data is passed as JavaScript Object Notation (JSON)
objects: a human-readable key-value format for data exchange
and storage. It is supported by all modern programming lan-
guages and is therefore practical for communication between
two components written in different languages.

The requested information is sent to the client along with
appropriate HTTP status codes.

E-mail sending mechanism

The scope of the project includes active informing and
keeping in touch with the user, notifying them on certain
events. For example, formatted personalized e-mails are sent
when registering or submitting a paper successfully.

An e-mail sending system facilitates these functionalities,
accomplished using the services of the MailGun server [11].
For the SConES project, connecting to the MailGun server
is enabled by configuring the SmtpClient class of the
System.Net.Mail namespace using the data in the
appsettings.json file. The content of the messages is
generated using internationalized templates. The language of
the e-mail depends on the language selected by the user
when registering on the online platform. After generating the
appropriate e-mail body,the message is sent to the MailGun
server, which then forwards it to the recipient.

Data model

The data model (see Figure 5) consists of four main tables
and the relationship tables between them.The Conference
table stores the conferences with afferent properties and in-
formation. The Track table stores associated sections and
constraints where applicable. The User table contains user
profile data and the role. The submitted papers are stored in
the Submission table.

There is a one-to-many connection between the conferences
and tracks. Each conference has at least one section, and
each section belongs to only one conference due to individual
constraints.

Multiple papers may be submitted for each section, while
a paper can be submitted for a single section.In this case a
one-to-many relationship between the track and submissions
is used.



There is a many-to-many relationship between the submis-
sions and users. A submission has several users involved, as
each paper must have at least one author and at least one
supervisor. And a user can submit (or supervise) multiple pa-
pers. These connections are implemented with an intermediate
connection table (UserSubmission); the role of a given
user in a given submission (“Author” or “Supervisor”) is also
stored here.

There is also a many-to-many relationship between users
and conferences, to represent the interest of the user in certain
conferences by way of following.

Internationalization and localization

The SConES project aims to serve both Hungarian and
international student conferences. This requires application
globalization (g11n) [12]: a collective term for internation-
alization (i18n) and localization (l10n). The former allows
the text of the online interface to be available in multiple
languages; the latter is responsible for language conventions
such as date and currency formats. After opening the online
interface, the user can switch between the available languages,
which are currently English and Hungarian.

The principle of internationalization is to store messages
that vary by language in different resource files. As a result,
switching between languages does not require recompilation.
Thanks to this mechanism, the project can easily be extended
with additional languages through the addition of JSON-
formatted resource files.

IV. TECHNOLOGIES AND TOOLS

The server-side component of the project is realized in
C# using the ASP.NET Core [13] cross-platform framework.
To store the data, the PostgreSQL [14] relational database
management system is chosen. The communication is realized
through Entity Framework Core, which is an open-source,
cross-platform framework implementing the object-relational
mapping (ORM) paradigm.

The React JavaScript library is used to create the web client.
It provides the ability to create independent and recyclable
components that are typically written in an extended version
of JavaScript, JSX, which incorporates an XML-like syntax for
simple component description. Redux is used to easily manage
the state of components. It is an open source JavaScript
library whose main task is to manage the application state.
It does this through a central store that is accessible to all
components [15].

Globalization is enabled by the react-18-next package.
The terms to be translated are specified as key-value pairs
in JSON formatted resource files. The Semantic UI [16]
framework is responsible for the aesthetics and responsive
implementation of the application.

The project development workflow deploys the Scrum soft-
ware development strategy. Git serves as a distributed version
control system, for which GitLab provides the repository
and project management interface. Continuous integration is

Fig. 6. The SConES main page: upcoming conferences with pagination

achieved using GitLab pipelines. Docker [17] and docker-
compose are used for deployment and orchestration. To ensure
code quality, static code analysis is performed using StyleCop
on the server side, and ESLint on the client side.

V. USING THE APPLICATION

This chapter provides an in-depth explanation and illustra-
tion about the principal and more interesting use cases of the
SConES system.

The main page of SConES consists of a list of “Upcoming”
conferences (see Figure 6). To optimize network traffic and
provide transparency, the number of conferences displayed at
any one time is limited. The default setting is 3 conferences per
page, modifiable by the user. Above the list is a tabular view
allowing the user to change the listing between “Upcoming”
and “All” conferences.Basic information is displayed for each
conference: name, location, the time interval when it will be
held, and a poster.

The header contains a search bar for filtering conferences
by name, a drop-down menu for switching languages, and a
profile icon, the functionality of which depends on whether
the user is authenticated. From this drop-down menu, an
authenticated user can access their papers, edit their personal
data and log out. Guest users have the possibility to register
or log in through this same menu.

Conference profiles are accessible by clicking any confer-
ence card. Besides basic information, these display the names
of the sections with the submission deadline for each, and
a detailed description of the conference. For logged-in users
with previously uploaded papers, there is a table listing these
with further details. In case the deadline has not yet expired,



Fig. 7. Details of the submission

the page contains a button which will navigate to the page for
uploading papers.

The submission upload process consists of filling out a
form in which tracked personal information about the user
is automatically filled out. In addition, the user must select
the appropriate section; this will impact the allowed length of
the abstract and the format of the uploaded file. The user can
specify co-authors, at least one supervising teacher, the title,
the abstract and the submission file itself.

After submitting a paper, the user can access all its details
including the current status. This takes on one of the following
values: “Pending” (awaiting the approval of the supervisor),
“Approved” (by the supervisor), “Accepted” (by the commit-
tee) or “Rejected”. The latter signifies the decision of the
committee to decline the paper from the conference.

By clicking a certain submission, the user is navigated to
the detailed page of the submission (see Figure 7). This page
contains information about the other authors, the supervising
teacher, and allows the re-download of the paper.

VI. CONCLUSIONS & FUTURE WORK

It is not easy for bachelor students engaged in scientific
student activities to follow the different institutional pages
involved in a multi-stage conference system. Differences,
discrepancies or the lack of an online systems complicate the
application process. The SConES project presented in this pa-
per aims to unify these conferences through a shared platform
for submissions and paper management. During development,

the authors have managed to create an online platform that can
fill a gap in the management of Hungarian or even international
TDKs. Using such a platform can make it easier for students
to find and browse conferences, and as a result, organizers
can more easily reach their target audience. Using an online
system can also simplify the submission of papers and the
communication.

Presently implemented and presented core functionalities in-
clude registration, submission and the management of submit-
ted papers. The current section outlines some of the plans for
further functionalities enhancing customizability and security.

Possibilities for further development include the search
for conferences based on several different criteria, such as
sections, date, name and location. The system would also
allow organizers to create conferences, customize them, give
students the opportunity to edit the abstract of a paper al-
ready submitted, upload a new document according to the
rules of the given conference, or withdraw it if necessary.
A further enhancement plan is the moving the supervising
teacher approval process necessary in most TDKs to the
online sphere. Also, committee members should receive the
submissions through automated processes, allowing them to
examine, grade, comment and provide feedback.

REFERENCES

[1] S. Cziráki and P. Szendrő, “A TDK szerepe, szervezeti keretei és jövője
a felsőoktatási tehetséggondozásban,” https://bit.ly/2WVHhJh.

[2] Official webpage of the National Scientific Student Conference
(OTDK). [Online]. Available: http://otdk.hu/

[3] T. Larkin, “The student conference: A model of authentic assessment,”
International Journal of Engineering Pedagogy, vol. 4, no. 2, pp. 36–46,
April 2014.

[4] M. Zadnik and A. Radloff, “A new approach to a communications unit:
A student organized conference,” A Focus on Learning, pp. 292–296,
1995.

[5] Online system of the National Scientific Student Conference (OTDK).
[Online]. Available: https://online.otdk.hu/

[6] Official webpage of the Transylvanian Scientific Student
Conference organized in Cluj-Napoca. [Online]. Available:
https://etdk.kmdsz.ro/

[7] Official webpage of the Scientific Student Conference organized in
Târgu-Mures, . [Online]. Available: https://tdk.mmdsz.ro/

[8] Official webpage of the Scientific Student conference organized by
the Sapientia Hungarian University of Transylvania in Miercurea-Ciuc.
[Online]. Available: https://tdk.cs.sapientia.ro/

[9] Easychair webpage. [Online]. Available: https://easychair.org
[10] R. T. Fielding and R. N. Taylor, Architectural styles and the design of

network-based software architectures. University of California, Irvine
Irvine, 2000.

[11] Mailgun Official Page. [Online]. Available: https://mailgun.com
[12] K. A. Mckethan and G. White, “Demystifying software globalization,”

Translation Journal, vol. 9, no. 2, pp. 1–8, 2005.
[13] A. Freeman, Pro ASP.NET Core MVC. Apress, 2016.
[14] E. Geschwinde and H.-J. Schönig, PostgreSQL developer’s handbook.

Sams Publishing, 2002.
[15] K. Chinnathambi, Learning React: A Hands-on Guide to Building Web

Applications Using React and Redux. Addison-Wesley Professional,
2018.

[16] Official Semantic UI documentation. [Online]. Available:
https://semantic-ui.com/

[17] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux journal, vol. 2014, no. 239, p. 2,
2014.


