
Atlas: Software System for Monitoring and
Reserving Free Parking Spaces

Ágnes-Kriszta Szabó
Babeş–Bolyai University
Cluj–Napoca, Romania

agnes kriszta@yahoo.com

Zalán Ráduly
Codespring

Cluj–Napoca, Romania
raduly.zalan@codespring.ro

Örs-Krisztián Patakfalvi
Codespring

Cluj–Napoca, Romania
patakfalvi.krisztian@codespring.ro

Csaba Sulyok
Babeş–Bolyai University
Cluj–Napoca, Romania

sulyok.csaba@cs.ubbcluj.ro

Károly Simon
Babeş–Bolyai University
Cluj–Napoca, Romania
ksimon@cs.ubbcluj.ro

Abstract—Finding available parking spaces represents a sig-
nificant problem for drivers in dense urban areas. The searching
process results in substantial additional costs but also contributes
considerably to pollution and road congestion. The Atlas project
aims to facilitate the process of searching for parking spots.

The software system uses data from existing surveillance
cameras to list both designated and unassigned parking spaces
while tracking the number of drivers navigating to a given spot,
therefore it does not require expensive infrastructure. The main
parts of the system are the central server, the mobile application
and the computer vision module. The latter is responsible for the
processing of images taken by urban surveillance cameras.

The paper presents the structure of the project, the details of
the implementation, the tools and technologies used during the
development process, and demonstrates the usage of the software.

Index Terms—parking space, parking spot, mobile application,
surveillance camera, parking space detection

I. INTRODUCTION

Drivers or public transport users may experience the in-
convenience and frustration caused by traffic jams on a daily
basis. From an environmental point of view, road congestion
is a significant source of fuel and carbon dioxide emissions,
as evidenced by a 2012 study by the International Parking
Institute [1]. The same study estimates that “30% of the traffic
in any city is people in cars searching for parking”. According
to a 2011 case study conducted by Siemens [2], “drivers
looking for a parking space account for over 40 percent of
all inner-city traffic” on average days, but this number may
soar on the weekends or public holidays; around Christmas, it
can reach even up to 90%.

There are already various attempts to solve the problem
caused by the lack of parking spaces. Bosch uses ground-
mounted ultrasonic sensors [3] to gather information about
free parking spaces. Similar technology is proposed by a 2012
study [4], which aims to “find vacant spaces in a car park
in a shorter time”, as well as to detect car park occupancy
and improper parking. Another main category of parking man-
agement systems is the image-based parking space detection,
which may not require the installation of special devices. One
representative of this category concentrates on tracking park-
ing spaces in underground and indoor environments [5] “by
fusing sensors already mounted on mass-produced vehicles”.
Another project intends to detect unoccupied parking spots “by
using motion stereo-based 3D reconstruction” [6] paired with
a rear-view fisheye camera mounted on automobiles. Besides

reusable/global ventures, certain cities or districts may propose
localized solutions. One such endeavour is the Cluj Parking
[7] mobile application, initiated by the Mayor’s Office of Cluj-
Napoca, which provides real-time status information on seven
barrier car parks within the city. Another mobile application,
yeParking [8], allows parking lot owners with a subscription
to temporarily lend their unused spot for free.

The Atlas project differs from these solution attempts in
that it takes into consideration both designated and unassigned
parking spaces at the roadside. Parking spots are detected with
object recognition using neural networks, though the current
paper focuses on the software system part of the project.
The application makes it possible to list and reserve parking
spaces by evaluating areas monitored by existing surveillance
cameras, thus the installation does not require expensive
infrastructure extensions, the creation of new parking spaces
and/or a lot of human resources.

II. FUNCTIONALITIES

To access the services provided by the application, it is
required of the user to log into the application with their
Google account. Enabling the user to use their Google account
speeds up the authentication process as it saves them from the
registration steps and the creation and maintenance of a new
account. Users of the application can have three different roles:
guest, authenticated user and administrator.

The standard authenticated user has all the functionalities
that can help in searching and reserving parking spots. The
latter functionality consists of the reduction of available park-
ing spots on the server-side based on the number of drivers
navigating to the selected parking place. Among other things,
authenticated users have the right to retrieve data about parking
spaces and surveillance cameras, retrieve and modify data
belonging to their users, and create or cancel reservations.
They also have the option to filter the parking spaces and to
retrieve the distance between their current position and their
destination.

Besides the same general user rights, administrators may
also add new cameras and parking spaces to the system or
modify existing ones. Furthermore, they can also access user
data and reservations if needed.



Computer Vision

Server Open Source Routing 
Machine Server

Database

Cameras Classifier / DetectorScheduler

Mobile Client

Fig. 1. The relationship between the modules of the software system.

III. ARCHITECTURE

The software system is built around three main parts:
the central server, the mobile application, and the module
responsible for computer vision. The relationships between the
modules are illustrated in Fig. 1.

The current paper considers the computer vision module as
an external one, the presentation of which is not included in
details. By processing the images taken by urban surveillance
cameras, there are two different approaches to detect free
parking spots.

The first approach is to use a Convolutional Neural Network
(CNN) in order to classify only a cropped out parking spot
image from a camera, which concludes whether there is a
car occupying the parking space or not. By processing every
parking spot picture from an area, it can predict the total
number of available spots. This solution leads to a more
precise prediction in overall, because CNNs are accurate in
large-scale video classification [9], but requires more time to
process every cropped out parking spot image.

The other solution is to use object recognition with neural
networks to predict the currently appearing cars at a parking
area.

The scheduler component provides the images to the clas-
sifier or to the detector, retrieving them at intervals from the
cameras entered in the database. After the predictions are done,
the scheduler updates the parking spaces stored in the database
with the number of currently available spots.

This database is used by the central server, which is re-
sponsible for serving the clients belonging to the system. The
server is also responsible for authentication, for managing and
forwarding the data stored in the database and for establishing
a connection with the Open Source Routing Machine (OSRM)
server. The mobile application included in the software system,
which is available on both Android and iOS devices, allows
users to list and reserve free parking spaces by communicating
with the application server.

User
- googleId: String

- username: String

- password: String

- role: String

- name: String

- givenName: String

- familyName: String

- vehicles: [String]

- favouriteLocations: [Point]

- photo: String

- email: String

Camera
- url: String

- position: Point

- description: String

- parkingSpots: [ParkingSpot]

Reservation
- parkingSpotId: ObjectId

- currentPosition: Point

- createdBy: ObjectId

- expiresAt: Date

ParkingSpot
- fullCapacity: Number

- freeSpots: Number

- position: Point

- title: String

- address: String

- maskPath: String

- price: Number

- decription: String

- private: Boolean

- rating: Number

- reservations: [Reservation]

1

1

1

0..*

1

1

Fig. 2. Local objects corresponding to the four main schemas defined on
server-side and the connections between them.

IV. THE APPLICATION SERVER

The application server is a Representational State Transfer
(REST) API [10], which is responsible for serving the parking
space related requests from the client applications.

The structure of the server follows the principles of the
multi-tier architecture [11], according to which the following
layers can be separated: data model, data access layer and
Application Programming Interface (API). By splitting the
application server into layers, the development can be done
in a modular way, so the system can be easily maintained and
improved. Circular dependencies may also be avoided due to
the layers communicating exclusively in one direction.

This chapter presents the different architectural layers and
security details.

A. Data Model and Access

The data managed by the server is stored in a document-
based database, namely in MongoDB [12]. To determine the
structure of the documents storing the data, the following
schemas are defined: User, Camera, ParkingSpot and Reserva-
tion; two auxiliary schemas are used to specify geographical
positions (Point) and to describe polygons formed by coordi-
nates (Polygon). The local objects corresponding to the four
main schemas and their relationships are illustrated in Fig. 2.

The Users collection stores information about users signed
in with a Google account. With their consent, Google Auth
API provides their e-mail address, name, Google ID and
profile picture. Additional fields defined in the schema are
given by default or a value generated based on the previous
ones: as a role, each newly logged-in user is given simple user
rights, while their username is generated from their name.

The Cameras collection stores information about the
surveillance cameras registered in the system, including the



geographical location of the camera, specified with a Point
object, and a list of parking spaces under its monitoring.

The ParkingSpots collection contains common data which
describes the parking spaces, such as GPS location, address,
name, maximum capacity and the number of currently avail-
able spots. The latter is periodically set by the scheduler
with the prediction of free spots evaluated by the detector or
classifier.

The Reservations collection is defined by four properties:
the parking space where the reservation is made, the user
who made the reservation, the expiration date and the user’s
initial position. Using one of the advantages of the MongoDB,
the data stored in the Reservations collection expires at the
specified date, thus reservations are automatically removed and
no further effort is required for their management.

Data access and manipulation is implemented by the Mon-
goose framework. This is an Object Document Mapping
(ODM) framework, which allows performing operations on the
server with objects that match the documents in the database.
The created Mongoose models provide access to the data,
thus no MongoDB scripts are required for the Create, Read,
Update, Delete (CRUD) operations. These basic operations
represent a convention system for accessing/modifying re-
sources that facilitates persistent data storage. The implemen-
tation of the above-mentioned basic operations is performed
by the controller layer, which also provides a response to the
client in case of successful data retrieval or modification. The
controllers are closely related to the decorator layer, which
follows the decorator pattern. The task of such a component
is to dynamically extend request of the client with the object
to be modified or accessed, thereby reducing the number of
tasks for the given controller.

B. API

Hypertext Transfer Protocol (HTTP) requests sent by the
client are served by a RESTful API server. The benefits
resulting from this communication mechanism include loose
coupling and scalability.

Incoming requests are received by the routes layer, which
forwards them to the decorators’ and then to the controller
layer. In terms of the REST architecture, each resource can be
accessed through a unique URI. For every important collection
stored on the backend, there is an API endpoint, which
processes the incoming and outgoing requests with JavaScript
Object Notation (JSON) format. To work with these API
endpoints, authentication is necessary.

C. Security

To access the Atlas central API, a Google account sign-in
is required, a process consisting of several steps as illustrated
by Fig. 3. Clients have to send their Google token received
from a Google authentication API to the server in order to
validate this token. For this process, the server uses the OAuth2
[13] authorization framework. In case the validation of the
Google authentication token is successful, the server generates
a JSON Web Token (JWT) which authenticates the requests

Client Server

Google
1. Signing into

Google account

2. Personal data,
Google token

3. Authentication request
(personal data,
Google token)

4. Google token
validation

5. Information on
the token's validity 

7. JWT or error message

6. In case of a valid token
the user gets saved/updated,

new JWT is generated

Fig. 3. The Google sign-in process consists of several steps in the background,
just like in case of other third-party authentication service providers.

of the client-side user. For a user that already exists in the
database, the server updates its data provided by the Google
Auth API, otherwise, it gives them a unique username and sets
their role to basic user by default.

After authentication, the API endpoints become available to
the client if they have permission to access them. For each
request received, the server uses a middleware in order to
verify the JWT token and to check the authorization. Basic
users are allowed to access data about the parking spots and
cameras and also to manage their personal data which includes
their reservations as well. The administrator has every access
to all of the API endpoints.

V. THE MOBILE CLIENT

The main goal of the mobile client is to communicate
with the application server and display the user interface on
Android and iOS devices. Similarly to the architecture of the
server, the mobile client is also made up of several well-
separated layers. Communication with the server and other
business logic related tasks are handled by the service layer.
The data received from the server is taken over by the stores,
which are responsible for storing the information. The screens
layer contains the views while using the common elements
defined in the components layer.

The current chapter tackles the presentation of the commu-
nication with the server, the business logic layer, the display
layer, and the user interface.

A. Communication with the server

The mobile application communicates with the central
server via REST requests. The axios dependency is responsible
for assembling the header and body of requests sent to the
REST API.

Using the Axios library, communication over the network
works asynchronously [14], so each request sent by the service
layer returns a Promise, which makes it easy to handle and
process asynchronous responses.

After logging in, the personal token returned from the server
is placed in the default header of the Axios instance, thus it
is included in every request. The server checks the validity of
the token and then responds to the request depending on the



role of the user. In case of a logout, the contents of the header
get deleted.

B. Business logic layer

In the case of the mobile application, the business logic
is represented by the services layer. The services contain
functions that implement requests to the server or perform
calculations based on data already retrieved. The business logic
is separated from the display layer as only service classes
initiate requests to the server. Stores use an instance of these
classes to retrieve the required data from the server.

The services achieve the actual Google authentication, while
they are also accountable for preparing the parameter lists of
certain requests and for checking the responses received from
the server. Provided that the answers are alright, the received
data gets stored in the appropriate store. Otherwise, an Error
object is thrown by the method, which is then caught and
handled properly by the upper layers.

C. Display layer

The display layer consists of three parts: screens, compo-
nents, and stores. The screen layer contains the views that
the user can navigate through. These views use different
components, items that can be treated as a separate unit. The
elements required for navigation that are permanently present
on the screen, such as the bottom navigation bar, are also
part of the components layer. For screens and components
the data is provided by stores, which use service classes to
communicate with the server.

React Native, the framework used by the mobile application
provides several options to navigate between the screens with
the react-navigation library. The Atlas mobile application’s
navigation is built upon a Switch Navigator which connects
the Login screen, the Welcome screen and the logged-in parts
so that they are only accessible in the specified order.

The map view, the primary screen of the application,
provides the visualization of the available parking spots. For a
consistent look and feel, both Android and iOS devices use the
map provided by Google. Region changes inside the map view
are automatically handled by a built-in function of the map,
thus helping the app to provide a pleasing user experience. To
increase efficiency, the map always retrieves from the server
only the parking spaces located within the currently displayed
region, and their positions are marked with custom markers.
In order to cluster the markers shown on the map view that are
covering each other, a dependency is used. which extends the
basic React Native map. Additionally, the possibility offered
by Google Maps to mark the congestion of the roads and the
current traffic is also enabled.

The list view provides more detailed information about the
parking spaces, including the user’s distance from them. The
distance calculated by the server is updated in five seconds
interval.

Both the map and list screens use a modal that comes up
from the bottom of the screen to provide detailed information
about a specific parking space. Another common element of

the two screens is the header. This component includes a
hamburger icon which on press opens the side menu, and an
icon to display the search header. The search is performed
after each entered character in the text field and the filtering
is based on the names and addresses of the parking spaces
stored in the database.

The data used by the application are kept in stores. In
these classes, the view-related data are marked with an
@observable annotation, while the functions that can mod-
ify the values of the data are also flagged (@action) so
that they notify the interested views about the change. Parts
of the screen that contain store data and are marked with
@observer annotation, are rerendered each time when the
data is changed.

Since MobX is the state manager of the application, there are
three central stores defined: authentication store, map store,
and parking spot store. The authentication store manages the
data of the logged-in user and it also establishes a connection
with the authentication service. The map store is closely
related to the map view, as it stores the region currently
displayed by the map and the location of the user. The last
one contains the parking spaces retrieved from the server.

D. User Interface

Since the React Native it is a component-based library,
the views on the user interface are composed by different
elements. The entire interface consists of React Native compo-
nents and their extension classes, and the framework ensures
that the appropriate parts of the interface get quickly updated
as data changes. In addition to built-in elements, such as
buttons or text boxes, own components can be created as well.
Components’ size, appearance, and position can be customized
with style sheets.

Following the UI/UX principles [15], a key aspect of the
project is to build a user-friendly application that is easy to
use and shows consistency with frequently used products. This
makes it easier for the user to learn about the new product
without any additional learning cost. Keeping in mind the
platform specific elements, the Native Base UI library is used,
which provides components similar to the usual Android or
iOS look and feel elements. The interface of the application
is easy to use in order not to distract the driver’s attention
from the roadway, to require as little interaction as possible
and to help with navigation. Following the less is more design
principle, clarity, usability, and consistency are also important
factors, thereby reducing the users’ cognitive costs.

VI. TECHNOLOGIES

The central server uses Node.js [16], chosen for its effi-
ciency in serving scalable web applications and also for being
able to uniformly use the same programming language on
the server-side as in case of the mobile client. As JavaScript
is a loosely typed language, it can conveniently handle Not
Only SQL (NoSQL) databases, such as the one chosen in
case of the Atlas project, namely MongoDB. For the creation
of the RESTful API, the minimalist and flexible Express.js



framework is implemented, paired with Axios, a promise-
based HTTP client. The use of MongoDB is justified by
storing geolocation data which is supported by default. The
bridge between Node.js and MongoDB is formed by the
Mongoose ODM [17] which solves the automatic mapping
between database entries and local objects. For being able
to calculate distances between parking spaces and the times
required to cover the distances the Open Source Routing
Machine (OSRM) [18] is put into use, which represents an
important part of the architecture.

The mobile application uses React Native [19] as a cross-
platform framework, which enables the development of com-
plex, interactive user interfaces for both Android and iOS
devices. MobX [20] is responsible for state management,
chosen due to its simplicity and efficiency. The Native Base
library borrows a native look on both iOS and Android devices,
thus users are greeted by a pleasant and familiar user interface.
Firebase [21], the mobile and web application development
platform by Google, is used to solve the authentication of
users with their Google account.

The GitLab repository management system is utilized for
version control, project management and continuous integra-
tion and delivery. For deploying the application, Docker [22]
is used for its efficient virtualization capabilities. Alongside
Docker Compose [23] is used to connect the application server,
the MongoDB database, the module that seeds the database
with demo data, and the OSRM server. Quality assurance is
achieved using ESLint as static code analysis tool, paired with
Prettier plugins for code formatting.

VII. THE USAGE OF THE MOBILE APPLICATION

When the mobile application starts, the sign-in page wel-
comes the user with a Google login button. Touching the
button brings up a window where the user can select a Google
account to use. Signing in for the first time, the app asks
for permission to use the name, email address, and profile
picture belonging to the account. By accepting these the login
is successful and the page greets the user with a personalized
message. An unsuccessful login may be caused by the lack of
internet connection or server-side problems, in which case an
error message appears on the screen.

To access certain features of the application, the application
asks permission to geographical location of the device. To do
this, a pop-up window appears for the user after logging in
to grant access to their position. In case the user accepts it,
the pop-up no longer appears at later logins. If the Global
Positioning System (GPS) is not turned off for the device, the
app will suggest to turn it on using a pop-up window again.

The logged-in user is navigated to the map view (Fig. 4.),
which is the primary form of displaying parking spaces, based
on their position. On the map, the roads are colored according
to the current traffic, which helps the user to decide which
route can be taken. In order to reduce the number of markers
appearing on the screen, the parking spaces are clustered
on the map. The clustering of the markers are processed
dynamically in case of user interaction by zooming in and out

Fig. 4. The main screen of the appli-
cation which displays available park-
ing spots with the help of a map view.

Fig. 5. The parking spots can also be
viewed as a list with address, available
spots and distance information.

the map. When touching a clustered marker, the map zooms
in automatically. The non clustered markers show information
about the total capacity of the parking lots and about how
many of the spots are available. Navigating to the position of
the user is possible by pressing the right bottom button with
the current location icon.

The bottom navigation bar of the screen allows the user
to navigate between the map and list views. More detailed
information about the parking spaces in the region on the
map can be viewed on the list view screen (Fig. 5.). The
list items include the name of the given parking space, the
number of free spots and the distance of the parking lot from
the position of the user. The number of available spaces is
colored depending on how many of them are left: dark red
color indicates a number below four, orange marks less then
eight unoccupied spots, otherwise turquoise color is used.

All information about a selected spot can be displayed by
pressing on an item. In this way a modal appears as in the
map view screen. This window contains the name and exact
address of the given parking space, the parking fee, the rating
of the spot, a small map of the exact position and two buttons.

It is possible to search between parking spots by pressing
the search icon on the right side of the header and entering
characters in the text field. Thereby a filtered result list appears
which is updated at every change of the text field’s value.

By pressing the top-left hamburger icon, a side navigation
bar appears. In the sidebar further navigation items are avail-
able and also the logout can be carried out here. The other
sidebar items are considered further development possibilities.

VIII. CONCLUSIONS AND FURTHER DEVELOPMENT

Within the Atlas project, a software system has been created
for simplifying the process of searching for parking spaces.



The central server of the system connects the other compo-
nents and provides an API to its clients. Using this API, the
mobile application displays the available parking spaces on a
map or in a list view, as well as it offers the possibility to
reserve parking spaces.

During the development of the software system, several
further development possibilities have arisen.

One of the main priorities for future development would
be the navigation to the selected parking spot by opening
an external map application such as the Google Maps route
planner. Furthermore, it would be useful for the application to
send a notification to the user if the selected parking spot is
no longer available.

Installing the currently inactive buttons in the side menu
(Profile, Favorite places, Settings) would also be an important
feature. A new screen could be created where the user can
view and edit their personal information. Even vehicle data
could be entered here, allowing the app to recommend parking
spaces depending on the size of the vehicle and the size of
the available space. It would be also possible to save favorite,
frequently visited locations, allowing the user to search and
book a parking space near the saved location.

Creating a web client would also be a useful extension,
which would help administrators to maintain the surveillance
cameras associated with the system and the locations they
monitor. Moreover, further development plans include the
possibility of logging in with Facebook, as well as the creation
of an own registration system.

The implementation of a feedback form would be a useful
addition as well, allowing users to report if the number
of available parking spots indicated by the application does
not correspond to reality, either due to the computer vision
module’s wrong prediction or a camera failure. It would also
be desirable to mark and display parking spaces suitable for
the disabled separately, as well as to install the daytime and
nighttime theme of the app so that drivers would not be
disturbed by the light emitted by the application in the dark.

REFERENCES

[1] I. P. Institute, “2012 emerging trends in parking,” URL
https://www.parking.org/wp-content/uploads/2015/12/Emerging-Trends-
2012.pdf, 2012.

[2] Siemens, “Case studies for traffic solutions,” URL
https://www.academia.edu/5300681/Case studies for traffic solutions
Modern concepts and technologies help improve efficiency, 2011.

[3] S. Nordbruch, “Controlling a parking lot sensor,” Dec. 26 2017. US
Patent 9,852,623.

[4] A. Kianpisheh, N. Mustaffa, P. Limtrairut, and P. Keikhosrokiani, “Smart
parking system (sps) architecture using ultrasonic detector,” 2012.

[5] J. K. Suhr and H. G. Jung, “Automatic parking space detection and
tracking for underground and indoor environments,” IEEE Transactions
on Industrial Electronics, vol. 63, no. 9, pp. 5687–5698, 2016.

[6] J. K. Suhr, H. G. Jung, K. Bae, and J. Kim, “Automatic free parking
space detection by using motion stereo-based 3d reconstruction,” Ma-
chine Vision and Applications, 2010.

[7] E. Boc, “Green mobility and quality of life: Cluj-napoca case study,”
Sustainable Development and Resilience of Local Communities and
Public Sector Organizations, p. 79, 2018.

[8] “Cluj-napoca: Aplicat,ia yeparking e un park-sharing. poate pune capăt
ocupării abuzive a parcărilor plătite?,” 2018.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 1725–1732, 2014.

[10] R. T. Fielding and R. N. Taylor, Architectural styles and the design of
network-based software architectures, vol. 7. University of California,
Irvine Irvine, 2000.

[11] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[12] K. Chodorow, MongoDB: the definitive guide: powerful and scalable
data storage. ” O’Reilly Media, Inc.”, 2013.

[13] R. Yang, W. C. Lau, and S. Shi, “Breaking and fixing mobile app au-
thentication with oauth2. 0-based protocols,” in International Conference
on Applied Cryptography and Network Security, pp. 313–335, Springer,
2017.

[14] A. Mardan, Asynchronous Code in Node, pp. 417–429. Berkeley, CA:
Apress, 2018.

[15] J. Gothelf, Lean UX: Applying lean principles to improve user experi-
ence. ” O’Reilly Media, Inc.”, 2013.

[16] P. Teixeira, Professional Node. js: Building Javascript based scalable
software. John Wiley & Sons, 2012.

[17] S. Holmes, Mongoose for Application Development. Packt Publishing
Ltd, 2013.

[18] S. Huber and C. Rust, “Calculate travel time and distance with open-
streetmap data using the open source routing machine (osrm),” The Stata
Journal, vol. 16, no. 2, pp. 416–423, 2016.

[19] B. Eisenman, Learning react native: Building native mobile apps with
JavaScript. ” O’Reilly Media, Inc.”, 2015.

[20] P. Podila and M. Weststrate, MobX Quick Start Guide: Supercharge the
client state in your React apps with MobX. Packt Publishing Ltd, 2018.

[21] L. Moroney, Moroney, and Anglin, Definitive Guide to Firebase.
Springer, 2017.

[22] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[23] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.


