
Woody: A Software System for the Design and
Production of Doors and Windows

Orsolya Máthé
Babeş–Bolyai University
Cluj–Napoca, Romania

mathe_orsolya@yahoo.com

Botond Miklós
Babeş–Bolyai University
Cluj–Napoca, Romania

myklosbotond@gmail.com

István Bege
Codespring

Cluj–Napoca, Romania
bege.istvan@codespring.ro

Attila Farkas
Codespring

Cluj–Napoca, Romania
farkas.attila@codespring.ro

Csaba Sulyok
Babeş–Bolyai University
Cluj–Napoca, Romania

csaba.sulyok@gmail.com

Abstract—The Woody project aims to make the daily produc-
tion process easier and more efficient. It provides a platform
for keeping track of all orders and makes it possible to gen-
erate workshop drawings, component lists and other required
documents for each order. The workshop drawing contains the
proportional blueprints for each product, while the list of all
components needed for making them is also generated for the
entire project. The software can also suggest an optimal strategy
for cutting out these components, thus reducing the waste of
resources. The definition of the products is done using a dedicated
domain-specific language (DSL).

The responsive web interface makes it possible for the appli-
cation to be used in the field at the time of recording an order. In
this way, pictures of the installation site can be uploaded using
a mobile device in order to aid the manufacturing process.

I. INTRODUCTION

Due to the countless variations a client could ask for when
ordering a door or window, parts of the design process are
still done on paper today. It is hard to formulate a set of rules
applicable to every situation. Despite its flexibility, designing
on paper has significant drawbacks. It is time-consuming,
and sometimes produces erroneous results, which lead to
unexpected costs, additional work, and a delayed delivery
date. Moreover, the formulas used in the design stage may
change due to the client ordering a previously non-existent
type of product, the introduction of new machines into the
manufacturing process, or other unforeseen factors. On top of
this, the carpenter faces a complex problem when trying to
minimize the waste of resources in stock.

The purpose of the Woody software system is to make the
above mentioned process easier and more efficient. Through
a web platform, the orders can be managed, along with
the products, clients and other relevant information. After
the appropriate parametrization of the products in an order,
it is possible to generate the shop drawing containing the
proportional blueprints of each product, as well as the list of
all components needed to manufacture them. The application
also provides a one-dimensional lengthwise optimal strategy
for cutting out these components, taking into account the sizes
of the resources in stock.

This software system is a successor to a similar desktop
application named FaTherm, written by one of the authors
of the current paper in 2004. Although still in use today1, it
uses outdated and no longer supported technologies, making

1Workshop accessible at https://www.farkas.ro/

software maintenance too cumbersome. Woody replaces and
extends this software in a way that would enable other work-
shops to use it as well. Shifting from the desktop to the web
makes it possible for the application to be used simultaneously
from multiple locations. The revised data model facilitates the
addition of new product types without the intervention of a
developer, while the optimal cutting strategy aims to reduce
the expenses of the company.

II. FUNCTIONALITIES

The application defines a single user role, therefore every
functionality is available for anyone working in the workshop.

Every user can enter new clients and projects into the
system. To create a client, only a few bits of personal in-
formation are needed. When creating a project, a client and a
deadline must be specified; images and windows can be added
optionally. The saved clients and projects may be listed.

The most important functionalities of the Woody project lie
in the interpretation of the data representing a project. The
shop drawing, the component list, an optimal cutting strategy
and the list of the attached images are the views that a user
can request regarding every project. The shop drawing contains
the dynamically generated and proportionally scaled figures of
the windows, while the component list enumerates all the parts
from which the windows of a given project can be built. These
two views are printable; the last page of the printed version
shows an overview of the project to promote transparency
during the production phase.

The optimal cutting shows how the wood parts belonging
to a given project can be cut out from the boards in the
workshop with minimal loss. The cutting strategy is visualized
by dynamically generated vector graphics.

The images of the project location are meant to help to
prepare the installation process.

The user can modify the data of already existing clients
and orders, so that they always remain realistic. During the
maintenance of a project, images can be deleted, added, and
windows can be updated, removed or created. When creating
a window, values have to be assigned to the variables defined
in its type. The formulas that describe the window can be
reached only through the window type.

Furthermore, a price offer/weight estimation can be re-
quested for every project, which contains the individual



REST

EF Core

Web Client

Static Files

Proxy

REST API
Server

PostgreSQL

Web Server

REST

Fig. 1: A depiction of the communication between the client,
the web server, the application server and the database.

price/weight of each window from the project, as well as their
sum.

III. THE STRUCTURE OF THE WOODY APPLICATION

The Woody application has two main parts: the web inter-
face and the application server (see Figure 1). The application
server provides RESTful Application Programming Interface
(API) endpoints for accessing and changing data. First in-
troduced by Roy Fielding in his 2000 PhD. dissertation [1],
REST (REpresentational State Transfer) is an architectural
style for web-based projects. A RESTful service has the
following main characteristics: it provides a uniform interface
for accessing data, it is stateless, responses are cacheable,
the communication follows the client-server model, and the
system can be layered and restructured without the necessity
for client-side intervention.

Due to the structure of the software system, requests from
the outside can only reach the web server responsible for
serving the static files needed by the web interface. This
server also acts as proxy, forwarding any API requests to an
application server located in its local network; API request
paths are differentiated by the /api/ prefix. The application
server handles the request, querying or modifying the data
in the PostgreSQL relational database, then sends a response
containing the result or an error, both in JSON (JavaScript
Object Notation) format.

IV. THE APPLICATION SERVER

A. Architecture

The server is modularized as seen in Figure 2.
The Persistence Model, Domain Model and DTO (Data

Transfer Object) components represent three variants of the
domain information (see Sections IV-C and IV-D).

The task of the Controllers component is to accept and
answer client requests. The incoming DTOs are converted to
domain models, conversely outgoing data is formed into DTOs
with the Domain–DTO Mappers.

The Service layer contains the business logic. It accepts
requests transmitted by Controllers, and creates the correct
answers for them by communicating with the data access layer.

The Repository facilitates CRUD (create, read, update,
delete) operations, communicating with the database. The re-
ceived domain model from the Service layer is converted into

.NET core Backend

Controllers

Service Layer

Domain ModelRepository

DTOs

Persistence-
Domain
Mappers

Domain-DTO
Mappers

Persistence
Model

Formula Parser

Fig. 2: The components of the server.

the persistence model variant with the Persistence–Domain
Mapper.

The Formula Parser module creates the possibility of stor-
ing the formulas in the data structures, and evaluating them
when needed.

B. Formula Parser

The purpose of the Formula Parser is to interpret, evaluate
the rules and to generate the dynamic drawings. The rules
can be simple formulas, which describe some quality of
the components; e.g. the (width + height) / 2 formula
defines a size. These formulas may be stored in the database
and can be evaluated for different variable inputs at any
time; e.g. if the width=3 and height=5, then the Parser can
determine the final result, in this case 4.

In addition, visual element commands may also be used
for drawing; e.g the Line[0, 0, 100, 100] draws a line
starting at the (0, 0) coordinate, and ending at (100, 100).

Since dynamically generated drawings are necessary for the
project, the two mentioned functionalities are combined into
a domain-specific language (DSL) [2] called Nyílászáró leíró
nyelv (NyZLNy)2. This language defines commands to sim-
plify describing/generating window drawings. For example,

2“Language describing doors/windows” in Hungarian

SVG[
width + 30, height + 20,
WindowPane[opening, 0, 0,

width, height * 0.92],
Fill["none",

Rect[0, height * 0.92,
width, height * 0.06]

],
Text[width + 5, height / 2, height],
Text[width * 0.4, height + 15, width]

]

(a) Snippet from the NyZLNy language

200

100

(b) The resulting drawing
Fig. 3: Example of how the DSL works.



Window

+ type: WindowType
+ variables: Dictionary<string, SubstitutionValue>
+ quantity: uint

WindowType

+ name: string
+ requiredVariables: List<TypedVariable>
+ formulas: List<Formula>
+ components: List<Component>

Component

+ name: String
+ width: Formula
+ height: Formula
+ depth: Formula
+ orientation: Orientation
+ quantity: uint
+ groupName: string

Formula

+ expression: IEvaluable
+ expressionString: string
+ type: FormulaType

<<enumeration>>
OpeningDirection

Fixed
Left
LeftTilted
Tilted
Right
RightTilted

<<enumeration>>
Orientation

Vertical
Horizontal
Diagonal

<<enumeration>>
FormulaType

Drawing
Price
Weight
...

TypedVariable

+ name: string
+ type: VariableType

<<enumeration>>
VariableType

Int
Float
OpeningDirection
...

Client

+ name: string
+ email: string
+ phoneNr: string
+ address: string

Project

+ name: string
+ deadline: DateTime
+ client: Client
+ windows: List<Window>
+ images: List<long>

0..*

1

1

11

0..*

0..*0..*

BaseEntity

+ id: long

Fig. 4: The structure of the Domain Model

the WindowPane command (see snippet in Figure 3a) uses
the following parameters to describe a window: its opening
direction, the coordinates of its upper left corner, and its
size. The command generates the rectangle with the dashed
lines inside it (indicating the opening directions) shown in
Figure 3b.

C. Domain Model
Of the three different server-side data model variants, the

Domain Model is built around aiding business logic imple-
mentation. The DTOs represents the models that are used by
the Controllers during the communication with the client.

The structure of the Domain Model is shown in Figure 4.
The BaseEntity is the base class of each entity describing
class, it has only one long typed id field, which is needed
for identifying the objects.

The Client class contains the data of a client: name, e-
mail, phone number and address. The Project incorporates
information about orders, such as a Client typed client. While
the list that represents the windows is made of Window typed
objects, the list of the images contains only their identifier.
Since the business logic does not use the binary data of the
images, it would be a waste of resources to store it in the
project entity. Contrary to this, various operations are made on
the windows, and hence the whole object list is well-founded.

For expandability reasons, the formulas are not hard-coded.
The window types visible to the client are represented in
the WindowType entity on the server side, which contains
a name and three lists for formulas, required variables and
components.

The Formula class makes it possible for the WindowType
to describe any window type. Its type attribute differ-
entiates between formula types such as drawing, price,
weight or size. The formula itself is stored both as
plain text (expressionString), and in an evaluable form
(expression). The conversion form text to the IEvaluable
type is made by the Formula Parser.

The Component entity defines the components from which a
window is built, e.g. the wood pieces of the frame. The width,
height, depth fields are formulas, this way every piece of
the window has the same adaptability. Besides these, every
component has a name, an orientation, quantity, and a group
name; grouping the wood elements helps in the production.

The Window model is for storing the window instances. An
instance has a type (WindowType), quantity and variable val-
ues (the substitution values for the variables that are specified
in the type). The variables field is a dictionary mapping the
required variable names (from the window type) to substitution
values; e.g. (width, 3). These variable values are substituted
into the formulas of the window type with the help of the
Formula Parser. This is how the components of the right size,
the dynamic figures and the right price estimation are created.

D. Persistence Model

The communication between the server and the database
is realized with the help of an ORM framework (Object
Relational Mapper), which makes it possible to handle data
through objects. The objects are defined in the Persistence
Model, which differs only in few aspects from the Domain
Model.

The repository layer contains an Images entity, which stores
the binary data that represent the images, and has a projectId
foreign key field pointing to a project. In the Persistence
Model, the Project contains not only the ids that point to
the images, but also the whole image objects.

In the Window entity, the variables are stored in a Variable
typed list. This new type has a string field for storing the
value of the variable, and two foreign keys: one is pointing
to the window instance, the other to a TypedVariable. This
TypedVariable is mapped to a Dictionary in the domain
model.

These differences are needed, because the project uses a
code first database [3]., i.e. Entity Framework Core generates



database tables from the exact provided models, if they do not
already exist. The Domain Model is added to the project so
that these conventions would not affect the business logic.

E. Optimal Cutting
The wood elements from the frame are cut from boards with

fixed height and depth, but varying width. During the cutting
process the question of an optimal cutting strategy emerges.
This is only a one-dimensional question, yet the answer is an
NP-hard problem [4].

In Woody, a randomized, heuristic algorithm is used for
searching for the optimal cutting of the boards for a project.
The algorithm is not guaranteed to find the single most optimal
strategy, but it significantly reduces the material losses of the
workshop.

Algorithm 1 Pseudocode of the algorithm used in finding the
optimal cutting strategy.

W ← Wood pieces that need to be cut out
B ← Board lengths from the storage
elems← []
waste← 0
randomSort(W )
while W is not empty do

minList←W
minElem, minWaste← cutBestGreedy(B0, minList)
for all boardLength in B starting from the second item do

currentList←W
currentElem, currentWaste←
cutBestGreedy(boardLength, currentList)

if currentWaste < minWaste then
minWaste← currentWaste
minElem← currentElem
minList← currentList

end if
end for
W ← minList
add minElem to elems
waste = waste+minWaste

end while

The wood elements from the order are grouped by their
height and depth, the algorithm runs separately on these
groups. First, the elements are randomized and the loss is
calculated for this order. The number of possible elements
cut is calculated for each board length in stock (the priority is
based on the random order), and the loss is measured, retaining
the better case. This is repeated until there is no wood element
left uncut. These steps are repeated multiple times for different
random orders, and strategy yielding the minimal loss is kept.
The amount of repetitions is constant, set in this case to 1000.
To illustrate the result, the DSL generates an SVG format
image.

V. THE WEB CLIENT

A. Architecture
The web client is composed of four main modules: Types,

API, Components and Stores.
The Types module contains the client-side representation of

the data entities.

The API module is responsible for communicating with the
server. The requests are sent asynchronously and the responses
are handled using callback functions, ensuring dynamic data
queries. This module also handles the conversion between
entities and DTOs.

The Stores handle the client state, i.e. each entity has a cor-
responding store which contains data and related operations.
It uses the API module for querying or modifying data.

The Components module houses all the web components
used by the user interface. It calls upon the Stores component
for handling user input and re-renders the contents of a
component when the data being represented changes in the
stores.

B. Single-Page Applications and Routing

The advantage of Single-Page Applications (SPA) is their
speed due to the fact that after the initial page load they
only update the parts which have changed, and do not require
reloads of the entire page [5]. The required HTML, CSS and
JavaScript source files are loaded on first access, after which
the only communication is the transfer of data between the
client and the server.

However, SPAs lose the advantage of user progress tracking
through URLs, therefore client-side routing is used to dynam-
ically change the URL based on the currently used view. This
allows the browsers to save the different states in their history,
making stepping back or searching for a particular page easier.
Routing helps in choosing the visible components as well, thus
the user can be greeted by the same view after a potential
reload of the page.

C. Components

The user interface is composed of smaller units named
components. The final view is constructed by nesting many
components, which allows the reuse of general purpose com-
ponents in different views. These components can be stateless
or stateful; the latter type automatically re-renders its contents
whenever data changes in its state.

The dynamic updating of components based on the data
they represent makes building complex interfaces easier. The
updating process can happen solely on the client side without
the need for further requests after the initial data load. An
example of this would be the addition of a new window to
a project. In this case, the selected window type specifies
what variables are needed for that window. Based on this
list of required variables, an input form is generated with an
input field for each variable. The type of each input field is
determined based on the type of the variable it represents,
which can result in a numeric input, a text field or a drop-
down list.

VI. TECHNOLOGIES

The application server is written in C# using the ASP.NET
Core framework [6], chosen for its efficiency and cross-
platform capabilities. For enforcing the various constraints
in the data model, the relational PostgreSQL database [7]



Fig. 5: The view greeting the user upon accessing the website

is responsible for persisting the data. The communication
between the server and the database is handled by Entity
Framework Core [8].

The web interface is built using the React library [9], which
helps in building reusable components written in the XML-
like JSX (JavaScript eXtension). The URL routing is achieved
with the help of React Router. For type safety and an object-
oriented approach TypeScript is used instead of JavaScript.
MobX [10] is responsible for the centralized management of
the application state, extracting the state from each component
into stores centered around each entity. InversifyJS provides
an inversion of control (IoC) container for achieving the
dependency injection (DI) design pattern [11] on the front-end.
The Bootstrap [12] CSS framework provides a grid system
for making the web application responsive, while styled-
components manages the styling of UI elements on a React
component level.

Git [13] was chosen as a distributed version control sys-
tem, with GitLab [14] providing a remote repository and
project management interface. For deploying the application,
Docker [15] is used for its efficient virtualization capabilities.
Webpack serves as a static bundler for aggregating the source
files and their dependencies. npm and nuGet are the depen-
dency management tools used in the front-end and back-end,
respectively. For quality assurance purposes, NUnit is used for
testing, while TSLint and StyleCop are static code analysis
tools for enforcing coding conventions.

VII. THE USE OF THE WOODY APPLICATION

When visiting the webpage, the user is greeted with the
Dashboard, which provides easy access to the most used
functionalities of the application (see Figure 5). The first card
contains a link to the top 3 projects with the deadline closest
to the current date. The two additional buttons redirect to the
project creation and project list views. The next widget aims to
make uploading photos to a project easier. After choosing the
project from a drop-down list, the user can attach one or more
pictures using the Browse button. Below these lies a third card
listing links pointing to the most recently added clients, as well
as a button, which navigates to the client addition form.

(a) Variable input fields generated
for the chosen window type

(b) Taking and uploading photos
to a project

Fig. 6: The webpage as viewed on a mobile device

The Dashboard, much like the rest of the application, has
a responsive design which makes using the webpage just
as comfortable on smaller devices as on larger ones (see
Figure 6). On a mobile device, for example, the three cards
are situated below each other.

The main navigation element of the webpage is the sidebar,
located on the left side of the screen. On smaller screens, like
mobile devices, the sidebar is hidden and can be accessed
through the "hamburger" button in the top left corner. Menu
items include the aforementioned dashboard, the client addi-
tion page, creation of a new project, listing clients and listing
projects.

When adding a new client to the application, one must fill a
form with relevant client details, with mandatory input fields
marked with an asterisk. The Add button becomes enabled
only when all entered data is valid: all the mandatory fields
are filled out, and the phone number/e-mail address are not
yet present in the system (in order to avoid client duplication).
Success or failure of the asynchronous addition call is commu-
nicated to the client through appropriately stylized notification
boxes in the lower right corner.

When listing the clients, the information regarding each
is displayed in a tabular form, together with an Edit button,
which enables data modification.

By choosing the Create Project menu item, the user is
presented with a form built for this purpose. Each order must
have a client that can be chosen from the list of registered
clients using a drop-down list. A name and deadline are also
compulsory for an order; the deadline can be chosen using a
date picker input.

When creating a new project, one can also add windows or
upload photos as well. After choosing a window type, the user
is presented with a set of input fields representing the required
variables related to that specific product type. Figure 6a shows



Fig. 7: Details - Detailed information of a project with the
workshop drawing and list of components

the inputs belonging to the Single Window type. Only after
filling out every field can the user click on the Add button,
after which the window is added to the “basket” associated
with the order. This basket lists all the windows added to the
project, together with a deletion option.

By clicking on the Browse button, the images to be uploaded
to the project can be selected. In the case of mobile devices,
taking a photo also becomes an option, as seen in Figure 6b.
Clicking the Add button adds the image to a basket similar to
the one described in the case of windows.

The last menu item is the List Projects, containing some
information about each project (name, client, deadline, number
of products) and a Details button. Clicking this button accesses
a detailed view that can be seen on Figure 7. At the top of
the page, the information about the project is listed, followed
by a tab bar listing different views.

The Details tab is the default view, listing the blueprints
of each window in the project, followed by the grouped list
of components. This can also be printed by clicking the Print
button. The printed format contains an overview table with
the information present in the header. The second tab is titled
Optimal Cutting and shows the results of the cutting strategy.
The various boards are grouped by depth and height, with the
amount wasted being shown for each group, as well as the total
waste on the bottom of the page. This view can be printed as
well. By choosing the third tab, Images, the photos attached
to the project can be viewed. Throughout each tab view, an
Edit button can be seen, which leads to a form for modifying
the current project.

VIII. CONCLUSION AND FUTURE WORK

The result of development on the Woody project presented
in this paper is a software system that provides a web interface

for managing woodworking workshop orders and designing
their products.

One of the main ideas of the project is to create a software
solution for the wood industry which models the manufac-
turing process of doors and windows in a generic way. This
provides an easily maintainable and expandable application,
which does not require rebuilding of the source code.

Other workshops can therefore easily apply and benefit from
this software by using the presented domain-specific language
to create their own product templates.

Based on the needs of the inquired workshop and the ideas
that arose during development, there are several possibilities
for improvement, such as:

• interactive graphical user interface for creating new win-
dow types with refreshable layout drawing and variable
parametrization;

• material needs view that lists the raw materials needed
by type, including more aggregates, such as iron fit-
tings ordering table, glass ordering table, sealing gel
quantity, paint quantity or installation accessories (screw,
polyurethane foam, etc.).

• creating remarks to clients that can be linked to projects,
special requests and bids;

REFERENCES

[1] R. T. Fielding and R. N. Taylor, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation, University of
California, Irvine, 2000.

[2] M. Fowler, Domain-Specific Languages, ser. Addison-Wesley Signature
Series (Fowler). Pearson Education, 2010.

[3] M. Bojkowski. (2018) Code-First Database De-
sign with Entity Framework and PostgreSQL.
[Online]. Available: https://www.compose.com/articles/
code-first-database-design-with-entity-framework-and-postgresql/

[4] G. Scheithauer and J. Terno, “A branch&bound algorithm for solving
one-dimensional cutting stock problems exactly,” Applicationes Mathe-
maticae, vol. 23, no. 2, pp. 151–167, 1995.

[5] M. Mikowski and J. Powell, Single Page Web Applications: JavaScript
End-to-end, 1st ed. Greenwich, CT, USA: Manning Publications Co.,
2013.

[6] What is ASP.NET Core? A cross-platform web development
framework. [Online]. Available: https://dotnet.microsoft.com/learn/web/
what-is-aspnet-core

[7] Official PostgreSQL documentation. [Online]. Available: https://www.
postgresql.org/about/

[8] Microsoft Docs: The Official Overview of Entity Framework Core.
[Online]. Available: https://docs.microsoft.com/en-us/ef/core/

[9] Official React.js documentation. [Online]. Available: https://reactjs.org/
tutorial/tutorial.html#what-is-react

[10] Official MobX documentation: Introduction. [Online]. Available:
https://mobx.js.org/index.html#introduction

[11] M. Fowler. (2004) Inversion of Control Containers and the Dependency
Injection pattern. [Online]. Available: https://martinfowler.com/articles/
injection.html

[12] Official Bootstrap documentation: Introduction. [Online]. Available:
https://getbootstrap.com/docs/4.3/getting-started/introduction/

[13] S. Chacon and B. Straub, Pro Git, 2nd ed. Berkely, CA, USA: Apress,
2014.

[14] Official GitLab documentation: What is GitLab? [Online]. Available:
https://about.gitlab.com/what-is-gitlab/

[15] J. Turnbull, The Docker Book: Containerization Is the New Virtualiza-
tion. James Turnbull, 2014.


