Blood Notes: Software System for Promoting and
Facilitating Blood Donation

Hunor Hegediis
Babes-Bolyai University
Cluj-Napoca, Romania
hegedus.huni @ gmail.com

Tibor Fazakas
Codespring
Cluj-Napoca, Romania
fazakas.tibor @codespring.ro

Abstract—The Blood Notes project aims to subserve and
popularize blood donation, respectively to support an effective
and permanently extant communication channel between the
project’s two target audience. One of the target audience contains
persons who are willing to donate blood. For them, the system
provides a mobile application for logging and scheduling their
donations, for receiving notifications and for accessing useful
information related to the blood donation process. The other
target audience includes employees working at blood donation
centers. Using a web application, they are able to manage the
informative data published through the mobile application, and
they are able to send notifications about the current blood
necessities.

The software system has three main components: a central
server, a mobile application for donors which is running on iOS
and Android platforms, and a web application for the employees
of the blood donation centers.

The paper presents the functioning and the architecture of the
system, listing its features together with the used technologies and
development tools.

I. INTRODUCTION

Although there is a huge need for blood donors, blood
donation does not enjoy sufficient popularity, and unfortu-
nately, compared with other regions, the situation is even
worse in Romania from this perspective. While in Austria 70
percent and in France 55 percent of the population donates
blood, in Romania this proportion is only 1,7 percent. The
health institutes and NGOs are trying to draw attention to the
huge necessity, and to mobilize the population with various
campaigns and events, but they can hardly obtain relevant
results. The Blood Notes project presented in this paper aims
to contribute to this popularization process.

The Blood Notes application creates a connection between
the blood donation centers and donors, allowing the quick
information exchange, and providing an easy-to-use, user-
friendly platform for the users.

Before blood donation, each donor has to fill out a ques-
tionnaire at the blood donation center. Based on the answers
it is decided if he/she is eligible for blood donation. Through
the Blood Notes mobile application this form can be filled out

Kata Szédsz
Babes-Bolyai University
Cluj-Napoca, Romania
szaszkata97 @gmail.com

Andor Mihély
Codespring
Cluj-Napoca, Romania
mihaly.andor @codespring.ro

Kéroly Simon
Babes-Bolyai University
Cluj-Napoca, Romania
simon.karoly @codespring.ro

Katalin Nagy
Codespring
Cluj-Napoca, Romania
nagy.katalin @codespring.ro

online, and the answers are evaluated instantly. In this way
the donors are able to test their eligibility in advance, saving
time and avoiding pointless journeys to the blood centers.
Furthermore, the users can log their past donations to be aware
of the next time when they are allowed to give blood again,
and they will receive a notification about this date. They can
also receive notifications if someone needs blood urgently.

The above-mentioned notifications about urgent blood ne-
cessities are broadcasted by the blood donation centers and
hospitals through the web application. The notifications will
be received only by the users within that region, having the
adequate blood type and being able to give blood in the
given period. Due to this feature, the blood donation centers
are able to develop a stable donor-camp” around them. The
employees of these centers also have the possibility to manage
the informative data displayed within the mobile application:
they can edit the descriptions about the blood donation process,
the contact information related to blood donation centers and
the content of the donor questionnaire.

The remainder of the paper is structured as follows: Section
II. enumerates the features corresponding to different user
roles, Section III. presents the system’s architecture and Sec-
tion I'V. describes the used technologies and development tools.
Finally, some conclusions and further development possibili-
ties are listed.

II. USER ROLES AND CORRESPONDING FEATURES

The Blood Notes system has two different user interface: a
web application and a mobile application.

From the perspective of the mobile application, there are
non-registered and registered users, while the web application
can be accessed by users having operator or administrator
roles.

In this section the main features of the system are presented
based on the aforementioned roles.

A. Non-registered user

A non-registered user can only access a few features within
the mobile application. After launching the application some



LN LN

Donor Questionnaire Result

You can not be a blood

donor!

You have had an unexpected
decrease in weight lately.

Question 3/31

You have had an unexplained fever
lately.
Have you had an unexplained

0
fever lately? You have had dental treatment or

vaccination recently.

You are taking medication regularly.

(a) One of the questions of the donor
questionnaire.

(b) An unsuccessful test result.

Fig. 1. The donor questionnaire’s structure.

general information are displayed about the blood donation
process. After reading these pages, the users can access the
list containing the blood donation centers and their contact
information, and they have the possibility to fill out the donor
questionnaire. The user can answer the questions with yes or
no, the test is instantly evaluated and the results are displayed.
If the user is not eligible for blood donation, then the concrete
reasons will be enumerated (see Fig. 1).

B. Registered user

The registered users have all the rights of the non-registered
users, and in addition they are allowed to access more features
(see Fig. 2). They can log their blood donations, and they can
receive two types of notifications: notification about the date
when they can give blood again, and notifications from the
blood donation centers about current blood necessities.

C. Operators

The operators are employees working at the blood donation
centers. They have access to the web application and they are
managing the data accessible within the mobile application.

They can manage the list of blood donation centers, they
can edit the questionnaire and the content of the informative
pages (see Fig. 3). In the case of the informative pages a
preview is also available for them, which helps to check how
the mobile application will look like after the updates. Lastly,
the operators can send notifications to the mobile users if a
patient needs blood urgently.

D. Administrators

For the administrators all the features of the web applica-
tion are available. They are able to manipulate all the data

P4 0939

©

My past donations

Notifications

bd

Settings

Fig. 2. Features provided by the mobile application for registered users.

mentioned in Subsection II-C., and they can also manage the
operators.

III. ARCHITECTURE

The software system can be divided into three main com-
ponents: a mobile application for donors, which works on
i0S and Android platforms; a web application developed in
React.js for the employees of the blood donation centers; a
.NET Core server, which connects the first two components,
respectively serves and manages the data. All these main
components have multi-layered architectures [1]. The server
is communicating with a MySQL database and with the
Firebase Cloud Messaging (FCM) platform. FCM is used for
broadcasting notifications from the server to the mobile clients.

The communication between the server and the mobile-,
respectively the web clients is realized based on the Hypertext
Transfer Protocol (HTTP), corresponding to the Representa-
tional State Transfer (REST) conventions. The communication
with the MySQL database is implemented using the Entity
Framework.

These relationships are represented on Figure 4. and detailed
in the following subsections.

A. Server

The server’s main responsibility is to serve the clients with
data. The requests are received by Controller components, and
these controllers interact with the data access layer to execute
the requested operations.

The classes in the DBModels package are representing
the data stored in the database, while the classes in the
Models package represent the data available for the users. The
transformation between these two types of classes is realized
by Assembler components, using the AutoMapper plugin. The
classes stored in the Modules package have a role in realizing
the system’s functionalities.

The architecture of the server is represented on Figure 5.



BLOODNCTES ‘

CENTERS

QUESTIONS Questions

INFORMATION

OPERATORS

Are you feeling well

today? frue

UPDATE

2 You are not feeling

tue well today.

DELETE

?III

Have you had an You have had an UPDATE
unexptlectedl false true 2 unexpgctedl
decrease in weight decrease in weight
lately? lately.

Fig. 3. The web application interface: the content of the application is available and can be managed in three languages (Hungarian, English and Romanian).

MySQL database

*

Entity Framework

|

Firebase Cloud Send notifications
Messaging

\ /N ET Core server\

Ferward netifications REST

\

Web client

Mobile client

Fig. 4. The architecture of the Blood Notes software system.

1) Data model: The data is stored in a MySQL relational
database. Each table from the database is represented by a
corresponding model class. For example, the table, which
contains information about the blood donation centers is
represented by the BloodDonationCenters class, having the
corresponding attributes, like center name, phone number, ad-
dress, etc. Similarly, there is a model class for the introductive

Server sice

Mobile and web

clients & Firebase

A DBModels I

Assemblers EEEEEETETEIREE Controllers

u Models e a Moduls

Fig. 5. The component diagram of the server.

information, for the questionnaire and for the operators.

In the case of the operators the system stores their name,
email and role, together with their encrypted password and
firebase token. An operator has a firebase token only if he/she
is subscribed for notifications from the web application.

There is no need for using SQL commands to execute
CRUD (Create, Read, Update, Delete) operations, because the
Entity Framework provides simple methods for data manipu-
lation. The ORM (Object Relational Mapper) system provides
two pattern for managing the database: the Code-First and the
DataBase-First patterns. The Blood Notes follows the Code-
First pattern, which means that the first time the application
starts, the server checks if the database exists or not, and if
not, then creates the relational schema based on the model
classes. The newly created tables are filled using predefined
SQL scripts.

2) Security: The HTTP requests received from the mobile
and the web application are served by an API server, which



operates as a RESTful service. The communication is based
on the HTTP protocol using JSON as transfer format.

There are different permissions available for different roles
(detailed in Section II.). The users can access only the contents
available for their role.

After a successful login operation, the server generates a
JSON Web Token (JWT) for the user, which includes the
username and the token’s expiration-date in the form of key-
value pairs, using an encryption method. For each request the
generated token will be included into the HTTP header. In
the case of the web application the tokens are saved in the
sessionStorage on the client side.

B. Mobile

The mobile application operates on iOS and Android plat-
form. It is developed using the Xamarin Cross Platform
technology, and in this way the two versions have a common
C# codebase. Most of the business logic is written in this
shared library, but the user interfaces have to be implemented
separately. The architecture of the mobile application is rep-
resented on Figure 6.

[Portable Class Library|

! [Android] ,.—"// S

A

‘ Activitie;5|v.‘ AdaptersEH Fragment%;“
' T3 |

=]

i :
] ‘ Resource? :

L{ Modulsa| ‘ Services
x

Fig. 6. The components of the Blood Notes mobile application

1) Communication with the server: The mobile applica-
tion communicates with the server through a RESTful API.
The REST requests are implemented in the shared library
containing the common codebase for the Android and iOS
applications.

The requests are sent by the HitpClient class from the .NET
System.Net.Http namespace, using the SendAsync() method.
This method has only one parameter, a HttpRequestMes-
sage, which specifies the path and the type of the request
(GET, POST, PUT, DELETE). The response is created by the
Newtonsoft.Json framework, the data is transferred in JSON
format, and the data processing continues separately on the
two platforms.

2) Business logic layer: On mobile side the business logic
is implemented in the Portable Class Library. The model
classes are stored in the Models sub-package. These classes are
used by the business logic components from the Services sub-
package to implement the required operations. The services
are invoked from the ViewModel, which communicates with
the view components from the iOS and Android libraries.

3) User interface: While the business logic is implemented
in the shared library, in the case of the user interface different
components are used for the two supported platforms. The
Android user interface is a hierarchy of Views, where a view is
a given screen from the application. Activities instantiated from
the Activity class are responsible for controlling the views.

A declarative approach is considered for creating the views,
using AXML files. Within these files the screens are assembled
using tags, layouts and UI widgets. Each of these elements has
a corresponding class in the codebase. The views defined in
the AXML file can be easily created by the activities, usually
within the onCreate() method.

The Resources package contains the media and style files,
together with the resources required for localization and inter-
nationalization.

The iOS user interface is developed using .xib and .sto-
ryboard files provided by the Interface Builder. A .xib file
defines a view and a .storyboard file contains a set of views
with a continuous transitions between them. The views are
located in the Content View Hierarchy and ViewControllers
are used for handling these views. Each view has its specific
view controller, like SignlnViewController, LandingPageView-
Controller, etc.. All these controllers are instantiated from
the iOSViewController, which is responsible for updating the
views, for responding to user interactions, for handling the
constraints of the views and layouts, respectively for commu-
nicating with the other components.

C. Web

The web application provides a user interface for data
manipulation and for broadcasting notifications to the mobile
clients. It has a component based architecture implemented in
React.js. A component is a given page from the web applica-
tion, stored in the components package. The communication
with the server is managed by specific services stored in
the services library. The Ul components are mapped to URL
paths using a routing process, which is implemented in the
config package. Figure 7. presents the architecture of the web
application.

Web side.

_--7 components "~

ap

services

i
H
¥ i
i

"~ containers

Fig. 7. The architecture of the Blood Notes web application.

1) Communication with the server: The communication
between the web application and the server is also based on a
RESTful APL The requests and responses are handled by the



Fetch API, which serves a global fetch() method, respectively a
Request and a Response object. The response arrives in JSON
format and it is processed by the Response.json() method.

2) Components: The components representing the pages
of the web application are implemented in .jsx files. Within
these files the JavaScript code can be completed with simple,
HTML-like elements (fags with different attributes). These
elements are provided by external libraries, like reactstrap,
reactjs-popup, react-confirm-alert, etc. Each component ex-
tends the React.Component class, implementing the render()
method, which adds the component to the Document Object
Model (DOM). Within the components state objects are used
for storing the data received from the server. Each time when
the state is changed due to an event (i.e. a button click), the
component will be automatically updated.

3) Routing: By the routing mechanism the components are
assigned to URL paths. Path-component key-value pairs are
defined in a file and these values are used by the containers
to display the components. For example, if the user would like
to reach the page, which contains the blood donation centers,
a request has to be sent to the /centers path and as an effect
the centers component will appear in the browser.

4) User interface: The browsers are not able to interpret the
Jsx files directly. The babel-plugin-transform-react-jsx plugin
is required from the Babel library to compile the .jsx into
JavaScript code. From this compiled code React creates a
virtual DOM, from which the browser constructs its own DOM
and displays the content for the user based on this DOM. The
component style of the user interface is defined in CSS and
SCSS files.

5) Security: After a successful login operation, the user’s
username, token and role are saved in the sessionStorage,
until the browser closes. When a container is created, the
system checks the session’s content and the components will
be displayed only if the user has the proper permissions. For
example, the operators are not able to see the Operators item
in the menu, because they have no rights for managing other
operators.

IV. TECHNOLOGIES AND TOOLS

The central server is developed using .NET Core [2], which
provides platform independence and a rapid development
process, by the help of this technology a reliable API server
is realised. The C# code is written in Microsoft Visual Studio.

The data is stored in a MySQL Database and the server
communicates with this database using the Entity Frame-
work. Data belonging to the project has a strict, deliberate
structure, each of data records, stored in the same table, are
build alike. Hence, data are relational, so the MySQL Database
had been chosen for storing, because this provides relational
schema.

The mobile application is also implemented in Visual Studio
using Xamarin [3]. The cross-platform technology allows the
parallel development of the iOS and Android applications.
There is a Shared Library, which contains the business logic

layer and this code is used invariably by both the Android and
the i0S platform, only the UI layer is implemented separately.

The source code fall into line with the MVVM design
pattern, because this is one of the best way to write a main-
tainable, testable and extensible code. Because this pattern can
sometimes be hard to implement, the MVVMLight toolkit
was used for accelerating its creation.

For notification broadcasting the Firebase Cloud Messag-
ing Google service is used. The web application sends the
notification’s content to the server, the server forwards it to
the Firebase service, and the messages are broadcasted to the
subscribed mobile users.

The Blood Notes data administration interface is imple-
mented using React.js [4], a JavaScript library for building
web applications. The biggest advantage of React is the
possibility to update the content of the view without reloading
the whole page. The web application is developed in Microsoft
Visual Studio Code and the Node Package Manager (npm) is
used for managing the external dependencies. The responsive
user interface is created using the Bootstrap CSS framework.

Docker [5] is a container-based virtualization tool, which
makes possible to run a software in a virtual environment. It is
working with containers providing the required environment
for running the application. In the case of the Blood Notes
project, there is a container for the application’s central server,
and a second one for the MySQL database server. These two
containers are connected to each other by the Docker Compose
tool.

V. CONCLUSIONS AND FURTHER DEVELOPMENT

Blood Notes is a software system for simplifying and
promoting the blood donation process. It provides a mobile
application for donors to log their blood donations, to access
useful information related to the donation process and to
receive notifications. It also provides a web application for the
employees of the blood donation centers for data management
and notification broadcasting. In its current state the project
is a prototype, but it was already successfully presented at
several conferences in Seklerland, like the Digitlis Szkelyfld
Konferencia and the Erdlyi Tudomnyos Dikkri Konferencia
(ETDK), where the Blood Notes obtains the II. place in the
Innovative computing products and applications section.

Gamification is the main priority from the perspective of
further development. A ranking system could be integrated
into the application, allowing the users to compete with each
other. For example, users could gain rewards and achievements
by logging their blood donations, by sharing notifications on
social platforms, or by inviting new users, etc.

A scheduler module and a calendar could be included into
the system, allowing the users to easily reserve free dates
at the blood donation centers. Popularization campaigns and
promotion events could be also supported by the application.

REFERENCES

[1] M. Fowler, Patterns of enterprise application architecture. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.



[2] M. J. Price, C#6 and .NET Core 1.0. Livery Place, 35 Livery Street,
Birmingham B3 2PB, UK.: Packt Publishing Ltd., 2016.

[3] c. B. Jonathan Peppers, George Taskos, Xamarin: Cross-Platform Mobile
Application Development. Livery Place, 35 Livery Street, Birmingham
B3 2PB, UK.: Packt Publishing Ltd., 2016.

[4] A. Fedosejev, React.js Essentials. Livery Place, 35 Livery Street,
Birmingham B3 2PB, UK.: Packt Publishing Ltd., 2015.

[5] J. Turnbull, The Docker Book: Containerization is the New Virtualization.
James Turnbull, 18092 edition, 2014.



