
Diaspora Mapping and Collaboration Platform for
Expatriates

Kincső Tüzes-Bölöni
Babeş–Bolyai University
Cluj-Napoca, Romania

tuzesbkincso@gmail.com

Zsuzsanna Borsay
Babeş–Bolyai University
Cluj-Napoca, Romania
zsborsay@yahoo.com

Csaba Sulyok
Babeş–Bolyai University
Cluj-Napoca, Romania

csaba.sulyok@gmail.com

Károly Simon
Babeş–Bolyai University
Cluj-Napoca, Romania

simon.karoly@codespring.ro

Abstract—In the current globalized world, it is a frequent
phenomenon that people from different regions uproot and move
to other countries, working and living there temporarily or
long-term. But how could the origin regions follow the actual
residency of their habitants, and how could they keep the data
of the population up to date? The aim of the E-migrated web
application is to measure and dynamically visualize the dispersion
of specialists originating from a given country. It also gives
the opportunity of interconnecting these people and to create
a community, encouraging its users to build relationships and
cooperate. It is a virtual link for the professionals originating
from a common region, independent of current location.

This paper aims to present the E-migrated platform, describing
the architecture of the system, mentioning the details of the
implementation, the main technologies, tools and methods used
during the development process. It presents the functionalities of
the application, and demonstrates its behavior, using some case
studies.

Index Terms—collaboration platform;dispersion of expatriate
specialists;professional knowledge transfer

I. INTRODUCTION

There are many regions worldwide from where a multitude
of people decide to uproot and start working, studying and
living in other countries. But how large are these groups, where
do they settle down and in what proportion are they distributed
in other countries? Csala Dénes is searching for the answers
to these questions in his project called SZÉKELYDATA [1].
The goal of his project is to measure the dispersion of Székely
professionals. Székelys are a subgroup of Hungarian people,
who mostly live in Eastern Transylvania.

The technique of Csala Dénes for uncovering this data is
to manually gather and log relevant social media (Facebook)
information. The results are shown on a non-interactive world
map with clustered markers and pie charts, representing the
number of Székelys currently living in a given country and
the Transylvanian locations from which they originate.

In this paper, we present the E-migrated software project;
an initiative inspired by the ventures of Csala Dénes. It is
the part of the project Digitális Székelyföld (Digital Székely
Land), that was initiated by the IT Plus Cluster of Székely
Land. E-migrated is an interactive and rethought alternative of
SZÉKELYDATA; a web application depicting its participants
clustered on a world map. It offers to dynamically filter
specialists by profession, country or location. If a location of a
user changes, he/she can also modify it on the platform to keep

dispersion statistics up to date. Besides visually presenting
the diaspora of a territory, it also represents a collaboration
platform. It creates a community and attracts potential users
with a multitude of functionalities.

The general goal of the project is to explore experts orig-
inating from a given region and to create a comprehensive
register of them. Furthermore, it allows professional knowl-
edge transfer and the exchange of experience for its users.
It creates an elite social network for prominent members of
general fields, and would cooperate to contribute the economic
and technological development of their originating country.
Although the application is configured to be used by users
from Székely Land, it is easily adaptable for any region in the
world.

II. THE E-MIGRATED PROJECT

A. Functionalities

The target audience of the software system are professionals
originating from a common region, who have achieved remark-
able results in their respective fields. The joining of a user to
the system is based on invitation. After registration, he/she can
invite other people, but the number of invitations is limited,
in order to encourage everyone to thoroughly consider who
deserves to be the part of this community.

When joining E-migrated, one must read the policy of
the application about data protection. This policy meets the
European GDPR (General Data Protection Regulation) stan-
dards and describes the data handling and data storage of
the software. By clicking to Registration or any Save button
at profile modification, users agree that they have read and
agree with the policy, which is also available at any time after
registration.

User profiles include all the personal data given at reg-
istration (full name, profession, residency etc.) and a short
biography. Furthermore, users can share posts and list them
separately or together with the posts of every member of the
system (see Figure 1).

An authenticated user may delete his/her E-migrated ac-
count, after confirming their password. He/she can choose
complete deletion, in which case all personal data will be
deleted from the database, including all posts. But he/she can
also choose to keep their posts, in order to make them available
to others. In this case, every relevant post is assigned to an

View map

Send invitation Filter users on the map by
professions

Create post

List own posts
Authenticated

User

View personal data belonging to
map pins

View the public profile of other
usersList all posts

Edit personal data Add biography

Connect E-migrated account with
Facebook account Set E-migrated username and password if

registrated with Facebook

List invitees

Use map

Manage posts

Edit user profile

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>> <<extend>>

<<extend>>

Delete account

Fig. 1: Use case diagram for authenticated users

“anonymous” account, after which the account of the user may
be safely deleted.

The main page of the application contains a world map,
which contains pins and marker clusters representing the users
of the platform, so they can be filtered by location, region
or profession (see Figure 2). Authenticated users can see the
personal data belonging to the pins, and they can contact each
other with the contact information on the profile pages. Guests
can only see the pins; they are not allowed to see any personal
information about others.

In case an interested party wishes to join the platform, but
lacks a valid invitation, he/she is able to request one by sending
a curriculum vitae and a short motivational letter.

Upon receiving an invitation, there are two possible ways
to join. Simple registration involves filling out a form with
the personal data required by the standard profile, like name,
profession, e-mail address etc. The alternate way is registration
using a social network. Its advantages are that registration is
simple, fast, and it does not require filling out forms, because
the data appearing on the profile is received from the given
social network, and it can later facilitate the log in as well.
The E-migrated platform currently supports Facebook, with
plans to include support of Google+ and LinkedIn.

The administrators are also users of the system, but after
switching to admin mode, they are able to evaluate the
invitation requests and to edit the list of available professions.
They can list all the users, and in justified cases may suspend
or reactivate accounts.

B. Architecture

The project consists of two main components: the server
and the web client (see Figure 3). The communication between
them is based on HTTP requests which conform to the REST
(Representational State Transfer) conventions.

The persistent data of the system is stored in a MySQL
database, and the server-database communication is built on
Hibernate: the Java Persistence API (JPA) implementation
provided by the Spring framework.

The modularity of the server comes from the multilayer
architecture of the component [2]. Its advantages are that
different modules are reusable, easily replaceable without

Fig. 2: Home page for logged in users

changing the other layers, the code becoming clearer, more
understandable, and the exception handling more efficient.

The data access layer performs the data handling of the
application on database level. The Model and Repository
components belong to this layer. The Model contains the main
entities; these are simple POJOs (Plain Old Java Object) with
private attributes and public getters and setters. The server-
database communication is accomplished by the Repository
component, which applies the DAO (Data Access Object)
design pattern. This provides interfaces which ensure simple
data access to higher layers, separating the application logic
from the lower level database access.

The business logic layer specifies the interaction possibil-
ities with the domain data of the software. The presentation
layer is not allowed to access directly the essential entities
and it does not have to know the details of the data access
implementation. Therefore it uses the services provided by
the business logic layer. The Service component is based
on the ”facade” design pattern, providing available services
for the API through different interfaces. The corresponding
implementations of the interfaces use the methods of the
Repository component. The API ensures REST resources for
the presentation layer, so it receives HTTP requests and sends
HTTP responses based on the REST principles.

Nevertheless, the presentation layer needs different prop-
erties, or property combinations of business logic objects.
In order to reduce the HTTP requests, the serialization of
the messages between web client-server is implemented with
DTOs (Data Transfer Object). A DTO contains all the at-
tributes required by a view, and the Assembler component
performs the necessary conversions between the Model and
DTO elements.

The presentation layer is responsible for the behavior of
the user interface. The Web Service serves the requests of
the Web Controller, communicating with the API component
of the server, and uses the DTO elements of the server
to represent data. The Controller component controls the
View, using the Service layer. The View layer provides the
appearance of the user interface. The presentation layer applies
a client side MVC (Model-View-Controller) pattern, so it
separates the view from the control and data. The traditional
MVC is moved to the client side, so the server responses

Fig. 3: The main components of E-migrated software system

are not fully rendered views simply shown by the browser.
Instead, the server provides the static resources of the web
client together with the REST endpoints. The view rendering
is afterwards accomplished by the browser, using the data
received asynchronously from the REST endpoints.

C. Domain Model

The entities of E-migrated are Java Beans, which are
serializable classes containing getters, setters and a constructor
without parameters. Every bean is the descendant of the
BaseEntity class, which has a single attribute, the UUID:
a unique, system-level identifier, which is the primary key of
the tables that represent the principal entities in the relational
database (see Figure 4).

The main entity of the application is the User class, which
contains user-related attributes, such as full name, password,
e-mail address, profile picture, biography, preferred language,
etc.

Every user has a home address, which is stored in a separate
table in the database and is assigned to the User table with a
one-to-one relation. It is possible for multiple users to share a
common address, but for simpler modification of an address
without impacting other accounts, a one-to-one relation is
chosen. The Address class has a primary role at representing
the users in a clustered form in a world map: the lat and lng
attributes store the latitude and longitude of an address.

The professions are also represented by a separate table
in the database, and the two entities are connected with
one-to-many relationship. The Profession class contains
the number of the belonging users, and a key-value pair,
encompassing the name of the profession in the different
supported languages.

The Post class symbolizes the posts created and shared by
users. It contains the title, text, upload date and the uploader.

The InvitationRequest entity represents pending in-
vitation requests from those wanting to join the E-migrated
community. It includes the e-mail address of the interested
person, a curriculum vitae, short biography and the date of
the request.

<<abstract class>>
BaseEntity

- uuid: String

Profession
- professionName: HashMap<Locale, String>
- assignedUserCount: int

Address
- lng: Double
- lat: Double
- locality: String
- country: String
- formattedAddress: String
- streetNumber: String
- administrativeAreaLevel:
String

<<enumeration>>
Role

ROLE_USER
ROLE_ADMIN

User
- username: String
- email: String
- password: String
- firstName: String
- lastName: String
- avatar: String
- preferredLanguage: String
- invitationsRemaining: int
- providerUserId: String
- biography: String
- isSuspended: boolean
- isStandardAccount: boolean

CurrentUser

FacebookAccount
- email: String
- firstName: String
- lastName: String
- avatar: String
- connected: boolean

InvitationRequest
- email: String
- userMessage: String
- cv: String
- date: Date

RegistrationToken
- email: String
- expirationDate: Date
- token: String 1

invitedBy

1
inviterUser1

address
1 1

1
0..*

profession

1

1

role

1 1

user

Fig. 4: The Domain model diagram of E-migrated software
system

The invitation-based registration is provided by the
RegistrationToken class, which stores a unique token,
its expiration date, the e-mail address of the invited person,
and the inviter.

The role based access management is implemented us-
ing the Role enum. Its possible values: ROLE_USER or
ROLE_ADMIN. A role is assigned to every user, that is
automatically set to ROLE_USER at registration.

III. SERVER SIDE TECHNOLOGIES

The server side of E-migrated has been written in Java
using the Spring framework, which provides a comprehensive
infrastructure for Java-based applications [3]. In order to
implement a runnable version of the application quickly and
easily, the Spring Boot framework is also used, whose power
lies in the ”convention over configuration” principle [4]. This
section presents the main technologies used on the server side,
the different architectural layers, the behavior of components
and their communication.

The communication between server and the relational
database is realized using Spring Data JPA, which provides
a modular and general solution for data persistence/data ac-
cess [5]. Using the Spring Data project, the programmers do
not need to write queries in order to implement the data access
layer, they just have to implement the interfaces provided by
Spring Data and the framework generates the implementations
based on the method names.

In the service layer of the project, there are Service Spring
beans, all of them injecting a corresponding Repository in-
terface in order to use its methods for implementing the
main part of the application logic. They publish interfaces
used by the API layer, with no knowledge of the underlying
implementation details. These beans handle and log errors
in a general way, throwing layer-specific exceptions. The
UserService interface is responsible for the user-related
operations, such as registration, login, changing a username

or password, and it returns the users based on the incoming
parameters. The FacebookConnectionService inter-
face handles the registration and account connection with
Facebook.

The API layer manages the requests from the client, pub-
lishing its resources through RESTful endpoints. It handles
the requests, processes them and sends appropriate responses.
In order to implement the API layer easily, the spring-web
package is used.

When a request arrives, a handler defined as a Resource
class is executed. These handlers use the interfaces to the
service layers and pass the requests to them, if they need more
complex processing. They also handle the different exceptions,
incorporating them and sending appropriately transformed
error messages to the client.

The data sharing between the client and server happens
in JSON message format, by serializing DTOs. Each DTO
has an associated Assembler interface, which is structured
in a hierarchy with an abstract assembler on top containing
conversion methods between model and DTO objects. Some
assemblers incorporate default values for model objects, read
from configuration files.

To implement the application security, the Spring Security
framework is used, which offers comprehensive security so-
lutions for enterprise Java applications [6]. The application-
specific usage of Spring Security dictates the aspects of au-
thentication and authorization; BCrypt is used as the password
hashing library, and forbidden resource access is handled in a
general role-based way.

The project provides a custom HTTP path-based authoriza-
tion system: all paths starting with /guest/** are avail-
able for everyone, but paths starting with /user/** or
/admin/** are available only for users with the respective
role. The same convention is used also in the case of REST
resource paths, starting with /api.

In favor of the integration of social networks, for making
the registration and login more efficient, the Spring Social
module is used. It provides plausible solutions for creating
connections between a Spring project and a Software-as-a-
Service API [7]. Since registration into the platform is based
on invitations and Spring Social offers no support for that by
default, a customization is applied by implementing a range
of adapters and interceptors.

E-mail sending is resolved using the HTTP API of Mailgun,
which supports the SMTP, POP3 and IMAP protocols. In
order to use the services of the mail sender, a range of
configuration is needed, which are read from a properties
file. The dynamically built mail bodies are rendered based
on Freemarker templates using the Spring Web MVC (Model
View Controller) framework. Sending is realized using the
JavaMailSender interface supported by the Spring frame-
work [8].

IV. CLIENT SIDE TECHNOLOGIES

The web component of E-migrated is a single-page applica-
tion, where the handling of the different views and the building

of the page is implemented with Angular.js [9]. The Bootstrap
framework [10] has a proper role in the representation of the
user interface and in the realization of its responsive design.
This section presents the structure of the web client, the
functioning of its components and the main technologies that
make up its implementation.

Angular.js is a JavaScript based framework for web appli-
cations, that extends the dictionary of HTML with directives.
Its main advantages are that it supports the client side MVC,
two-way data binding and dependency injection. The client
side MVC pattern facilitates the expansion, maintenance and
testability of the software by separating the business logic
from data handling and view representation. Bidirectional data
binding ensures the automatic synchronization between the
model elements and the DOM elements of the user interface,
sparing the programmers from manual refreshing and short-
ening the amount of corresponding code. The dependency
injection helps to create clear and testable code, because it
supports the automatic injection of external dependencies from
Angular components, without knowing their implementation
details.

E-migrated uses the Angular UI-Router [11] library in order
to place more views within a single HTML page, every
view having its own name and controller. Thus the views
are reusable. The main page of the application contains two
ui-view directives, one containing the menu situated in the
header and one that includes the main content. These ui-views
are replaced dynamically with different states. The state-view
mapping is set in the main configuration file of the front-end
of the application, where a template URL, an effective URL, a
controller and corresponding permissions are assigned to every
state. When a user does not have the permission to reach a
state, the he/she is redirected to the home page.

The Angular Google Maps [12] third party library is used
in order to display the world map in the home page. It
ensures directives that facilitate the integration of the Google
Maps API into Angular.js applications, without knowing all
the implementation details of it. It also provides well known
Google Maps objects, such as markers, windows, lines on the
map.

The Angular Translate [13] library is responsible for the
internalization (i18n) of the project, happening on the client
side. Its lazy loading mechanism ensures that language specific
data requests from the server are only sent out when needed.
It contains built-in directives and filters, the corresponding
dependency has to be injected in the main module, and a JSON
file has to be created for every supported language.

The look and responsiveness of pop-up windows, and in-
formative or warning messages in the application are imple-
mented using the Sweetalert2 third-party library, which is ad-
vantageous by supporting the personalization of the appearing
content.

The testing of the front-end is implemented using the
Jasmine framework and Karma test runner. Jasmine is a
behavior-driven framework that supports the testing of the
user interface, while Karma helps the run of Jasmine tests

Fig. 5: Send invitation page Fig. 6: Edit professions page

in different browsers and devices. Karma also summarizes the
test results and provides visualization options to the developer
team.

V. DEVELOPMENT METHODS AND TOOLS

The development methodology of the project respects the
Scrum standards, ceremonies and roles. Accordingly, the de-
velopment process is divided into two weeks long iterations.
At the end of every sprint, a new functional version of the
application is completed.

For version control, the team uses git, while GitLab serves
as project management, code base and CI/CD (Continuous
Integration/Continuous Deployment) system. GitLab offers
development tools for the full life cycle of the software,
like a built-in Kanban board, sprint milestones, repository
management and continuous integration system. As version
control method, the team uses the Git Flow branching model.
Accordingly, the implementation of every user story is done
on a new dedicated feature branch. After approving the cor-
responding merge requests, they are merged into the master
branch, which holds the stable version of the application.

The continuous integration provides the correct functioning
of the software after integrating new functionalities. After
every push, a CI pipeline is started and every stage that
is defined in gitlab-ci.yml is executed. In the case of
E-migrated, if the push is performed on the production
branch, the CI pipeline consists of four stages: building and
Docker image creation, running of tests, static code analysis
and deployment to a staging test server. Otherwise, the first
stage does not include Docker image creation, and there is
no fourth stage executing the deployment. The order of the
stages guarantees that only a functioning, tested version of
the application is deployed to the test server, because if one
stage fails, the subsequent ones are not executed.

Fig. 7: Browse posts page

The deployment of the project uses Docker. A container is
created for the server, and another for the MySQL database,
so it is necessary to use docker-compose [14], which enables
the configuration and management of programs that consists
of more, separate containers.

The dependencies of the client side are managed by npm
(Node Package Manager) and automatically packed with the
source code by Gulp. In the gulpfile.js file, different
tasks are defined for building the code base or for static
code analysis using JSHint, FindBugs and Checkstyle. It
is possible to create an observer task, which automatically
refreshes the modified files (ex. js, css) also in the build
folder of the application. Another task is the ’gulp-concat’, that
concatenates all the JavaScript files to one, called main.js,
which can be referred to from the index.html.

As a build and dependency management tool on the server
side, Gradle is used, which supports the automatic download
and configuration of external dependencies, and helps to create
multi-module projects. It also generates Eclipse projects, runs
tests and static code analyzer tools, and extended with different
external plugins, it enables the full automation of the build
process. In case of E-migrated, the full project is built using
Gradle, because its Gulp plugin also builds the front-end of
the application, resulting in one end-to-end tool chain.

VI. THE BEHAVIOR OF THE E-MIGRATED APPLICATION

This section presents the functioning of the E-migrated
application and describes how users may interact with it.

The main page of the application contains a world map
powered by Google Maps, including multiple marker clusters
that show the number of registered users, distributed by region.
By zooming in on the map, these clusters are split up into
more pins, representing the users of the system more precisely.
Guests are not allowed to see any personal information about
the users represented on the map. They can only see the
markers and filter them by profession. An authenticated user
can also see who lives in a given location or country by
clicking on the pins, furthermore he/she can navigate to the

Fig. 8: Edit profile page

public profile page of a user from the map. If a marker cluster
includes more than three users, then a panel appears on the
right side of the window, with the list of those users (see
Figure 2).

The main menu is on top of every page in the application.
It allows every user to select their preferred language, and for
guests, it allows logging in. By clicking on the Login menu
item, they can choose between the default Login and Login
with Facebook buttons, or they can navigate to the request
invitation page, if they are not registered yet.

For authenticated users, the top menu is extended with other
menu items. For example, by clicking on the Send invitation
item, users may invite their friends to join (see Figure 5).
Under the Posts menu item, they can navigate between public
posts, create new posts, or list their own posts (see Figure 7).

By clicking on their name, they may navigate to the edit
profile page, where users can perform a range of operation
with their profile, such as connecting their account with
Facebook, changing their general data, etc. (see Figure 8).

The administrators are also normal users of the system; they
may switch between user mode and admin mode. If they are in
admin mode, by selecting the Users menu item, they can block
and reactivate a user account, sending them an auto-generated
e-mail, containing a private message from the administrator.
Under the Edit menu item, they can manage the professions list
(see Figure 6), with the deletion of a profession only available
if not assigned to any user. On this page, they can list the
invitation requests and accept, decline or delete them.

VII. CONCLUSION AND FUTURE WORK

In the beginning of the development phase, the team has
planned to create a prototype of an application that can
follow and dynamically visualize the dispersion of people
originating from a common region. That goal is successfully
achieved: the E-migrated web application was built, which is
a software system rich in functionalities, offering a wide range
of possibilities over showing different dispersion statistics. E-
migrated also serves as a professional collaboration platform,
creating a community of people with similar origins.

From discussions formed at several presentations of the
application, many new ideas and further development pos-

sibilities have arisen. These include: integrating other social
networks, like Google+ and LinkedIn to the application;
setting some posts as public in order to make them available
also for guests; uploading and sharing educational videos and
documents; requesting professional assistance or consultation
from other users.

Furthermore, supporting collaboration between users with
the help of gamification tools is also planned. These consist
of the introduction of a Thank You point system: users could
thank each other for the professional assistance by awarding
such Thank You points. Thereby the helper receives public
acknowledgement, and the users with the most Thank You
points could obtain other privileges or perks, such as more
invitations.

REFERENCES

[1] C. Dénes. Hol vagytok székely(földi)ek? – a teljes diaszpóra! [Online].
Available: http://csaladenes.egologo.ro/?p=773

[2] M. Fowler. (2015) PresentationDomainDataLayering. [Online]. Avail-
able: https://martinfowler.com/bliki/PresentationDomainDataLayering.
html

[3] Spring Framework Reference Documentation. [Online]. Available: https:
//docs.spring.io/autorepo/docs/spring-framework/3.2.17.RELEASE/
spring-framework-reference/pdf/spring-framework-reference.pdf

[4] F. Gutierrez, Pro Spring Boot. Apress, 2016.
[5] Dao support. [Online]. Available: https://docs.spring.io/spring/docs/4.2.

x/spring-framework-reference/html/dao.html
[6] P. Mularien, Spring Security 3. Packt Publishing, 2010.
[7] Spring Social Reference. [Online]. Available: https://docs.spring.io/

spring-social/docs/2.0.0.M4/reference/htmlsingle/
[8] J. Hoeller. (2003) JavaMail. [Online]. Available: https:

//docs.spring.io/spring/docs/current/javadoc-api/org/springframework/
mail/javamail/JavaMailSender.html

[9] B. Green and S. Seshadri, AngularJS. O’Reilly Media, 2013.
[10] The official page of Bootstrap. [Online]. Available: https://getbootstrap.

com/
[11] The official page of Angular UI-Router. [Online]. Available: https:

//ui-router.github.io/about/
[12] The official page of Angular Google Maps. [Online]. Available:

http://angular-ui.github.io/angular-google-maps/#!/
[13] PascalPrecht. The official page of Angular Translate. [Online].

Available: https://angular-translate.github.io/docs/#/guide
[14] The official page of Docker Compose. [Online]. Available: https:

//docs.docker.com/compose/

