
Taboo: Chord Sheet Editor and Manager Web
Application

Ervin Erőss∗, Adorján-Ferenc Péter∗, Balázs Sebestyén†, Tibor Fazakas†, Zoltán Szabó† and Csaba Sulyok∗
∗Faculty of Mathematics and Computer Science, Babes, -Bolyai University

RO-400084 Cluj-Napoca, Romania
†Codespring

RO-400664 Cluj-Napoca, Romania
erosservin@gmail.com; peter.ador@yahoo.com; sebestyen.balazs@codespring.ro;

fazakas.tibor@codespring.ro; szabozoltanbors@gmail.com; csaba.sulyok@gmail.com

Abstract—The aim of the Taboo project is to provide a user-
friendly interface for creating and managing guitar chord sheets.
The target audience is set as musicians with an interest in
browsing guitar tablatures and creating their own collection of
chord sheets.

The essential innovation of the application lies in the inter-
active interface for creating and editing these sheets, which are
described by a Domain Specific Language (DSL). This markup
language is interpreted by a rendering engine, facilitating the
responsive appearance of the chord sheets on devices with
different resolutions.

This article presents the Taboo project, including the require-
ments of the application, its architecture and the details of the
implementation. It describes the technologies and tools used
during the development process and it demonstrates the usage
of the software.

I. INTRODUCTION

There are several guitar tablature management systems1

available for musicians, however one crucial common issue
of these websites is the storage of data in plain text format.
Therefore chords are usually positioned above the lyrics with
whitespace characters, which makes the sheets harder to read
on smaller screens because the lines are incorrectly broken.
Furthermore, they may present other deficiencies, such as the
lack of password recovery, the difficulty of editing sheets or
the insecure user data processing.

Chord sheets are lyrics with guitar chords positioned over
particular words, indicating where and when a chord should be
strummed. The application defines a domain specific language
(DSL) (see Section III-D), which helps keep the accuracy of
chord sheets.

The motivation of the Taboo project is to improve the
shortcomings of already existing similar systems. Its purpose is
to provide an interactive interface to create chord sheets having
a responsive appearance. Thus the application provides a good
user experience when only mobile devices are available. Fur-
ther auxiliary features are also taken into consideration, such as
downloading chord sheets in PDF format (see Section III-B),
transposing chords or creating collections of chord sheets.
Transposing chord sheets involves changing the key of the
song, shifting all notes/chords with the same interval as the

1Example website: http://gitartab.hu

difference in keys. This preserves the harmonic nature of
the song, while involving different, potentially easier hand
positions.

The requirements and the architecture of the project, along
with the data models are presented in Section II. Section III
explains the implementation details of the application. The
used technologies and tools are presented in Section IV.
Finally, Section V and VI present the usage of the application
with plans for further development.

II. THE TABOO PROJECT

The following section presents the main functionalities, the
architecture and the domain entities of the application.

A. Requirements

Users of the application may take on different roles, such
as guest, authenticated user, moderator and administrator.

The guest user can access the least amount of functionali-
ties, some of the more important ones include:

• listing the uploaded chord sheets per page;
• transposing and downloading chord sheets in PDF format;
• searching for chord sheets.
Compared to the user with guest privileges, additional func-

tionalities are available for the registered and authenticated
user, such as:

• creating chord sheets;
• modifying and deleting their own sheets;
• reporting chord sheets created by another user;
• organizing chord sheets into collections;
• creating, deleting and downloading collections in PDF

format;
• sharing collections via public link;
• viewing and modifying profile data.
Besides the previously enumerated functionalities, the fol-

lowing are available for the moderator:
• deleting any chord sheet;
• deleting a flag from a reported chord sheet, which was

created by another user.
All the enumerated functionalities are available for the user

with administrator privilege, along with the following:



Web-Client

Action

Reducer

ModelService

RestController

Repository <<uses>>

<<uses>>

<<uses>>

Model

<<communicates>>

MariaDB

Backend

<<communicates>>

Container

View

<<uses>>

<<uses>> <<uses>>

<<uses>>

Fig. 1. Architecture of the system with the layers and the relationships
between them

• upgrading a simple user to moderator;
• downgrade a moderator to simple user.

B. Architecture

The Taboo software system contains three major compo-
nents: a Java server built on the Spring framework, a web client
using React, and a MariaDB database management system (see
Figure 1). The application follows the conventions set forth
by multilayer architectures [1]. In the following, the dedicated
server-side components are detailed.

The Model contains the main entities of the software,
which are mapped to the database by using the Hibernate
object relational mapping framework. The information sharing
between different layers is also realized using these models.
The Repository component is responsible for the different
database manipulation operations, such as creating, reading,
updating and deleting entities. The application uses the Mari-
aDB [2] relational database management system for storing
data. The business logic of the application can be reached
through the Service component. It uses the Repository
layer to build data transmitted to the higher layers. The
RestController performs the routing of HTTP requests
obeying a RESTful specification, thus opening up the server
to any potential clients.

The responsibilities of the web client module are building
and managing the de facto presentation layer of the applica-
tion. Its View component stores the structure of the displayed
graphical elements. The Action component facilitates the
HTTP communication with the server; it uses an event-based
mechanism to send requests and react to incoming responses.
The responsibilities of the Reducer are to catch events
and the received data to forward. Finally, the Container
component updates the application state with data transmitted
by Action, thereby displaying the actual content.

C. Data models

The classes representing server-side entities are Plain Old
Java Objects (POJO) boasting only private fields, a public
no-argument constructor and getter/setter methods. They are
shared across the different components of the server. The
relationships between the data models can be seen in Figure 2.

<<abstract>>
AbstractModel

-uuid: String

<<abstract>>
BaseEntity

-id: Long

User

-username: String
-password: String
-email: String
-newEmail: String
-firstName: String
-lastName: String
-enable: Boolean
-role: String

ChordSheet

-title: String
-artist: String
-text: String
-numberOfFlags: Integer
-flags: Set<User>

ChordSheetCollection

-title: String
-urlToken: String

1 0..*

user

0..*0..*1

user

0..*

choordSheets

Fig. 2. Class diagram representing server side entities and the relationships
between them

The AbstractModel class has a single property, which
provides a universally unique identifier for the entities. The
BaseEntity extends this, which also contains a single
property, namely the id, which is equal to the primary key in
the relational database. These are extended by the User, the
ChordSheet and the Collection classes.

The entities are all mapped to the relational database by the
implementation of the JPA (Java Persistence API) specification
provided by the Spring framework. The entity classes are
decorated with the appropriate annotations dictated by the
specification; restrictions and relationship schemes are speci-
fied here for the underlying tables and their columns.

III. IMPLEMENTATION DETAILS

This section illustrates the operating principles of major
features of the project using figures. The server side compo-
nent of the Taboo application is responsible, among others, for
PDF generation for downloading chord sheets and collections;
rendering and automatic sending of e-mails. Among significant
front-end features are the chord sheet editor or the commu-
nication with the server. In the following, the implementation
details of such scenarios are presented.

A. RESTFul web services

Taboo is a Single Page Application, which implies a single
initial HTML resource is served to the browser, handing over
further content change rights to the client-side code blocks.
When a user event occurs, these blocks send asynchronous
requests to the server to fetch/push any relevant data. With
any fetched data being processed and inserted into the right
template, it is ensured that up-to-date data is presented without
refreshing the page. This architecture loosens the dependency
between client and server, allowing either side to changed
without a significant impact on the other. It also decreases
network traffic, since only necessary data is refreshed.

The Taboo project contains an API layer, which receives and
processes HTTP requests sent by the clients, strictly abiding
to RESTful conventions. It uses the Spring Web extension
framework to map incoming HTTP requests to controller
methods using the @RequestMapping annotation.

For example, a POST request sent to the
/api/chordSheets endpoint is routed to the



Fig. 3. The format of the DSL chord sheet for storage and handling.

addNewSheet() method, which expects a ChordSheet
object as parameter; the @RequestBody annotation signals
that the request body should be deserialized into the parameter.
The information is propagated forward through the service
and repository layers, finally begin inserted into the database.

The requests received on the /api/chordSheets/{id}
endpoint perform different tasks according to the request type:
GET returns, PUT updates and DELETE deletes the chord sheet
with the corresponding ID.

All request bodies, parameters and payloads use the JSON
format, with the serialization and deserialization being re-
solved by the Spring Web framework. Responses encapsulate
HTTP status codes set according to REST conventions, re-
flecting the success/failure status of execution.

B. PDF generation

To make the favorite songs of a user available even in an
offline setting, the Taboo application provides the opportunity
of downloading chord sheets and collections in a generated
printer-friendly PDF format. Users may also create hand-
picked music booklets by printing collections.

The PDF generation is implemented on the server side with
the help of the Flying Saucer library, which expects an input
string with XHTML content for rendering. To produce the
mentioned parameter, the chord sheet described by a DSL
needs to be processed. In this DSL, the chords are represented
by a chord name placed between curly brackets (see Figure 3),
marking their right position in the lyrics. The processing of
the lyrics entails placing the chords over the text using the
appropriate CSS classes. After the content generation, the PDF
is output by using the iText library. Since the server does not
need the generated files it stores the rendered content in the
memory only while they are used.

C. E-mail sending

One of the missing functionalities of similar web applica-
tions is resetting forgotten passwords. In order to offer this
feature, it needs to introduce a registration involving two
steps. This means that after providing the personal data, the
server generates a unique identifier, which is included as a
link parameter in the confirmation message sent to the e-mail
address given by the user. By clicking the link, the user proves
that the e-mail address belongs to them, so they get access to
the system.

When the user starts the password reset process, the server
sends a link to the given e-mail address, which redirects to a
form where the user can set a new password.

Fig. 4. Pop-up for interactive chord operations

Similarly to the registration and the forgotten password
resetting procedures, the registered user has the opportunity to
change the e-mail address which was given at the registration.
With the help of a verification e-mail it is ensured that the
address is valid.

For the functionalities described above, e-mail sending is
necessary. The Taboo application uses the Mailgun services
in order to realize this functionality. The generation of the
mail content includes filling the FTL (FreeMarker Template
Language) templates with data (username, link, date). After
generating the e-mail, it is transmitted to the Mailgun server,
which delivers the it to the user.

D. Chord sheet editor

One of the main components of the Taboo project is the
chord sheet editor, which gives the possibility to create and
maintain the content of the website. The editor interface is
implemented with a simple and intuitive editing process in
mind for the user. The editor supports two ways of entering
chords: either in an interactive (using a mouse) or in a raw
format.

The editor uses the DSL to separate the chords from the
lyrics, and the chord sheets are also stored in the database in
this format. As can be seen in Figure 3, the interpreter of
the editor recognizes the characters inside the curly brackets
as a chord. Therefore, displaying and editing the sheet on the
website is also possible thanks to the DSL. Displaying the
chord sheet on the user interface, the rendering unit parses the
text row by row, replacing chord syntaxes with specific HTML
tags. These elements are formatted and placed above the lyrics
using CSS. Since the chords have a specific location relative to
the lyrics, they remain well positioned even on smaller screens
where word wrapping occurs.

The chord sheet editor is implemented using Draft.js [3],
which is an open source rich text editor framework developed
by Facebook. It allows annotating ranges of text with metadata.
As can be seen on the Figure 3 chords are highlighted, since
the editor interprets the attached metadata and adds a special
React component (Decorator) to the corresponding range.

The application includes an interactive chord input GUI,
in order to avoid forcing the user to learn the syntax of the
DSL and to follow its evolution. When the user clicks on
any position in the lyrics, a chord input window appears. The
window (see Figure 4) contains only an input field to enter
the chord, and a button to finalize the operation. Finding the
right method for positioning and moving the window presents
a challenge, because the accurate position of the window over
the cursor has to be determined for various screen resolutions.



Fig. 5. The list of chord sheets and the drop-down
menu to add them to collections

Fig. 6. The details of a chord sheet with the action
buttons

Fig. 7. Component to manage chord sheet collec-
tions

The editor supports the interactive insertion, modification as
well as deletion of the chords. The editor verifies the content
of the input field before each insertion. It validates the leading
characters and ensures they represent prefixes for possible
chords. The chords are easily editable with the interactive
mode, because the position of the cursor is checked after every
click, and if an entity is found, its content is loaded into the
input field of the window. When editing an existing chord
sheet, it is loaded into the editor, which parses and builds the
ContentState in order to become editable again.

E. Communication with the server

The client communicates with the server through a REST
API with JSON formatted requests and responses. The client
side of the application is implemented using the React
JavaScript framework. This is extended with the Redux[4]
state manager in order to make the application easier to
maintain and to facilitate further development. Thus the data
flow of the application is strictly unidirectional, so the state
becomes predictable.

The application has a store which contains its entire state.
The objects in this store are read-only, and the only way to
modify them is by dispatching actions. These are executed by
Reducers, which are pure functions; they do not depend on
any external state, such as a database, and always return the
same result if the same arguments are given. The requests to
the server are executed using the Redux Thunk middleware,
which enables asynchronous execution.

IV. TECHNOLOGIES & TOOLS

This section describes the technologies and tools used to
build, run, deploy and ensure quality of the Taboo project.

The server side of the project is developed in the Java
programming language, with the architectural layers imple-
mented using the Spring [5] framework. Besides Spring mod-
ules, other employed third-party libraries include the Apache
FreeMarker[6] template engine for e-mail content generation
and the Flying Saucer[7] and iText[8] libraries for PDF file
generation. The build process is executed with the Gradle[9]
build and dependency management tool.

The web client side uses the TypeScript[10] programming
language, the React [11] framework and the Redux [4] state
management library. Additionally, the Draft.js[3] framework is
used to implement the chord sheet editor and the responsive
design is built using Bootstrap[12]. It uses the Yarn package
manager to control the dependencies and Gulp[13] to transpile
TypeScript code into browser-compatible JavaScript.

Quality assurance of the application in its development is
guaranteed by static code analyzers, which enforce agreed
upon code conventions being respected in the source code.
The project uses Checkstyle[14] and FindBugs[15] for Java[]
code as well as TSLint[16] for TypeScript.

Git[17] is used for version control, while GitLab takes care
of centralized repository management[18], project manage-
ment as well as continuous integration[19]. The latter involves
pipelines begin automatically executes at every push to the
repository. The jobs in the pipeline include the build process,
running the code analyzers and the tests. Additionally, in
case of a push or merge to the main development branch,
a continuous deployment pipeline is triggered: the application
is automatically deployed to a staging server with the help of
Docker[20] and docker-compose.

V. USAGE OF THE TABOO APPLICATION

This section shows the main functionalities of the Taboo
web application using screenshots and descriptions.



Fig. 8. The chord sheet editor

The user is greeted by a landing page with the navigation bar
on top, providing the search field and an icon, which opens a
drop-down menu with user related functionalities. For a guest
user, the drop-down menu contains both the standard login
form as well as the Facebook API assisted login; links are
also available to reset a forgotten password and to register for
a new account. An authenticated user is instead presented with
navigation options to their own chord sheets and collections,
to change their profile data or to log out of the application.

The main body area of the application may show a list of
chord sheets in many different scenarios: as a result of viewing
the proprietary sheets of an authenticated user, listing the con-
tent of a collection or presenting search results. Figure 5 shows
a sheet listing example; each row represents a chord sheet by
showing its artist, title and uploader. The authenticated user
is allowed more functionalities, such as sorting chord sheets
into collections or editing and deleting own chord sheets. The
administrators and moderators have permission to delete chord
sheets belonging to other users as well.

Clicking on a row prompts the respective chord sheet to
be rendered (see Figure 6). The usability on smaller devices
is a main concern of the application, therefore the interface
design layout shows simplicity and transparency. The chord
sheets details view offers further functionalities: transposing
chords, downloading, editing, deleting, reporting or sorting
into collections.

The chord sheet collection view (see Figure 7) allows users
to create, view or delete collections. Using the drop-down
menu seen in Figure 5, the users can order chord sheets into
collections.

Figure 8 shows the chord sheet editor view. While typing
lyrics into the editor, the user can add chords which appear im-
mediately above the text, and are managed in the background
using the DSL.

VI. CONCLUSION AND FUTURE WORK

The Taboo web application reaches its aim by implementing
a user-friendly and intuitive interface for creating and manag-
ing chord sheets in a precise manner. It successfully involves
an interactive chord sheet editor and eliminates the problem
of broken lines with the help of a simple domain specific
language. Thanks to the minimalistic responsive design, the
application remains enjoyable on smaller screens as well.

Additional features successfully encapsulated within the
application include: collection management and sharing by
URL, transposing and reporting chord sheets, downloading
collections and chord sheets in PDF format, user management,
etc.

The planning, design and development phase of the project
has brought further improvement ideas to light, which include:

• internationalization and multi-language support for the
application;

• providing an interface for the users to be able to make
suggestions referring to chord sheets;

• graphically displaying chord fingering above the chords
in the sheets;

• integrating a chord sheet generator capable of recognizing
chords from an audio stream or YouTube video (such as
Chordify) into the system.

REFERENCES

[1] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[2] “MariaDB Official website.” [Online]. Available: https://mariadb.org/
[3] “Draft.js Official website.” [Online]. Available: https://draftjs.org/
[4] “Redux Official website.” [Online]. Available: https://redux.js.org/
[5] J. Rod, H. Juergen, D. Keith, S. Colin, H. Rob, R. Thomas, A. Alef,

D. Darren, K. Dmitriy, P. Mark, T. Thierry, V. Erwin, T. Portia, H. Ben,
C. Adrian, L. John, L. Costin, F. Mark, B. Sam, L. Ramnivas, P. Arjen,
B. Chris, A. Tareq, C. Andy, S. Dave, G. Oliver, S. Rossen, W. Phillip,
W. Rob, C. Brian, N. Stephane, and D. Sebastien, “Spring Framework
Reference Documentation.” [Online]. Available: https://docs.spring.io/
spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle

[6] “FreeMarker Java Template Engine Official website.” [Online].
Available: https://freemarker.apache.org/

[7] “The Flying Saucer Official website.” [Online]. Available: https://
flyingsaucerproject.github.io/flyingsaucer/r8/guide/users-guide-R8.html

[8] “iText Official website.” [Online]. Available: https://developers.itextpdf.
com/apis

[9] “Gradle Official website.” [Online]. Available: https://gradle.org/
[10] “TypeScript Official website.” [Online]. Available: https://www.

typescriptlang.org/
[11] React Official website. [Online]. Available: http://www.reactjs.org/
[12] “Bootstrap Official website.” [Online]. Available: https://getbootstrap.

com/
[13] “Gulp.js Official website.” [Online]. Available: https://gulpjs.com/
[14] “Checkstyle Official website.” [Online]. Available: http://checkstyle.

sourceforge.net/
[15] “FindBugsTM Official website.” [Online]. Available: http://findbugs.

sourceforge.net/
[16] “TSLint Official website.” [Online]. Available: https://palantir.github.io/

tslint/
[17] “Git Official website.” [Online]. Available: https://git-scm.com/
[18] V. Driessen, “A successful Git branching model,” 2010. [Online].

Available: http://nvie.com/posts/a-successful-git-branching-model/
[19] “GitLab Continuous Integration.” [Online]. Available: https://docs.

gitlab.com/ee/ci/
[20] “Docker Official website.” [Online]. Available: https://www.docker.com/


