
Software System for Broadcasting and

Monitoring Traffic Information

Beáta Balázsi*, Örs-Tihamér Kardos**, Sándor Ráduly***, Károly Simon****
* Babeş-Bolyai University, Cluj-Napoca, Romania

** Babeş-Bolyai University, Cluj-Napoca, Romania
*** Babeş-Bolyai University, Cluj-Napoca, Romania

**** Codespring LLC, Babeş-Bolyai University, Cluj-Napoca, Romania

beata.balazsi@yahoo.com

ors.kardos77@yahoo.com

sanyesz123@yahoo.com

simon.karoly@codespring.ro

Abstract—The purpose of the presented project is the

development of a software system for broadcasting, tracking

and managing traffic related information.

The system contains a server and an Android client

application for reporting and displaying traffic related

events (traffic cameras, traffic jams, accidents, roadblocks,

etc.). It also includes a web application for system

administrators and another web application for data

management and analysis.

Like other similar applications, the Sparrow project uses a

predefined camera database, but it also gives opportunity

for the users to report events in real-time.

The software system ensures several additional

functionalities, such as visual and audio notifications about

approaching events and data filtering possibilities.

The interface of the client application is intuitive and it is

easy and safe to use while driving.

I. INTRODUCTION

Sparrow is a software system for broadcasting and
monitoring traffic information. The project includes a
client application, a web-based administration interface
and a web-based data analysis and management interface.
The mobile client application provides a view for
reporting events and a map view for visualizing nearby
events (Figure 1).

The application can be very helpful for drivers (car, bus
and truck). Truck drivers already use a similar tool, the
CB radio, but using these radios they cannot know the
exact location of the reported events, they are not
receiving any visual notifications and sometimes the
system can be even annoying (e.g. while listening music,
talking with passengers or during phone calls).

There are similar applications on the market, but they
do not cover all the functionalities implemented by the
Sparrow project. Most of these applications use only
predefined databases (e.g. iSpeedCam), others are only
available in specific regions or countries (e.g. Beat the
Traffic). There are similar applications using social
networks and giving real time event reporting possibilities
(e.g. Waze), but these applications are not specialized. In
general, these applications report more than traffic related

events, that is why event filtering could be a real issue.
Using non-specialized user interfaces while driving could
be a problem, as well.

For understanding the utility of the Sparrow application

let us consider an example. A car driver would like to
travel through a city avoiding traffic jams. He decides to
avoid the city center and he chooses to go on a bypass.
Meanwhile, another driver gets into a traffic jam on the
road chosen by the first driver and reports the event by
using the same application. The first driver gets a
notification about this new event and chooses another
road.

Users can send feedbacks related to events. They can
approve an event, send delete requests, attach a comment
or share the event on Facebook.

Because the application is mostly used by drivers, the
user interface of the mobile client provides easy
navigation between different views. It has large and
visible buttons with touch feedback.

The Sparrow software includes a web-based
administration interface (Figure 2), which allows the
system administrator to see all the available traffic events
and cameras on a map. Filtering possibilities are also
provided. In order to properly display large amounts of
data, events are clustered. The standard clustering
algorithms can be slow for this amount of data, so the
Sparrow project uses map-reduce functions to solve this
problem.

Figure 1. Event reporting and map view (Android client)

mailto:beata.balazsi@yahoo.com
mailto:ors.kardos77@yahoo.com

 The web application also provides a user management
view for displaying information about users, tracks their
routes and the events reported by them.

The data analysis interface provides optimization

operations on different datasets: filtering duplicated POI-s,
aggregate POI-s in a given radius, etc. The results of these
operations are shown on a map and can be made persistent
for a later use.

In the first section of the article the main development
methods, design patterns and theoretical concepts are
presented. The next sections contain a short presentation
about the used technologies and development tools. These
are followed by a brief description of the project,
including the requirements, the architecture and the main
functionalities. Finally, some conclusions and further
development possibilities are presented.

II. METHODS AND DESIGN PATTERNS

The Sparrow development process is based on Agile

principles, using Scrum methods and Continuous

Integration practices.

The Sparrow web application is designed to manage

and display large amounts of data. The project uses map-

reduce functions, also supported by the used database

server (MongoDB [1]). The map-reduce programming

model is used to process large datasets by grouping the

data by a specified key and merging all the data with the

same key into one node. The method is based on two

functions, the map and the reduce; if the output data

structure needs to be modified, a finalize function can be

also used. The map function emits key-value pairs, which

are processed by the reduce function. The reduce function

is used to aggregate the values with the same key. In the

Sparrow project the key is composed by rounded latitude

and longitude coordinates. The value is composed by the

number of events grouped by category and the center of

the new cluster. The map-reduce functions are called by

the scheduled services provided by the Spring

Framework.

The architecture of the system is designed to be easily

extended with new event types. In order to achieve this,

the client application gets a list from the server,

containing the traffic event types. This operation is done

when the user logs in. Based on this list the client

application builds the event reporting view dynamically

with the help of adapter classes.

The Android [2] client application is designed

corresponding to the latest Android design patterns

recommended by the Android operating system

developers. It supports smart phones with different screen

resolutions and tablets with Android, as well.

In order to provide a unified appearance on different

screen sizes and pixel densities the Android client

application uses 9-patch resources, which helps stretching

the images without distorting them.

The system has a multi-tier architecture with a

repository layer, a service layer and a presentation layer.

The communication between the server and the mobile

client application is realized through REST services. The

server and the client use different domain models. The

communication is based on the DTO (Data Transfer

Object) design pattern [3]. The conversion between

model objects and DTO-s is performed by assembler

components.

III. TECHNOLOGIES

Sparrow is developed in Java and JavaScript

programming languages, using Java technologies.

The server side is based on the Spring framework [4]

[5]. The dependencies between the components are

managed based on the dependency injection design

pattern, by the Spring IoC (Inversion of Control)

container.

The repository layer is developed using the Spring

Data MongoDB framework, which provides integration

with MongoDB database.

The client application for the Android platform is

created using the Android SDK. The web interfaces are

created with the Vaadin framework [6].

On the client side, maps are being displayed by Google

Maps. The Leaflet JavaScript library is also used on the

web interfaces.

For POI clustering the default Leaflet clustering

algorithm is used, together with the MapReduce [7]

method. The client-server communication is based on

RESTful web services and it is realized by the Jersey

framework, which is the reference implementation of the

JAX-RS API (Java API for RESTful Services).

The SocialAuth Android library is used to connect to

different social networks from Android devices. Logging

is realized by the SLF4J API and the Log4j framework.

Unit tests are implemented using the JUnit framework

and the Mockito framework provides mock objects for

independent component tests.

IV. TOOLS

Sparrow uses Mercurial as an open source, distributed

version control system. The build processes are executed

with Apache Maven, an open source build and

dependency management system. The central repository

is managed by RhodeCode. Continuous integration is

supported by Jenkins. Redmine provides a project

Figure 2. Map view, data clustering, filtering (Admin UI)

management and issue tracking system. The XWiki, as a

wiki software platform, is used to share different

documents between developers.

Sparrow’s code quality is maintained using

SonarQube, a source code analyzer platform. It covers the

main aspects of code quality: comments, coding rules,

potential bugs, complexity, unit tests, duplications and

architecture.

MongoDB provides the server’s database. It is a

document-oriented, NoSQL database management

system. MongoDB supports 2d indexing, giving the

possibility to write queries related to geographical

coordinates. The Android client application uses SQLite

database.

Apache Tomcat is used as web server. It is an open

source servlet container for running Java-based web-

applications.

V. THE SPARROW PROJECT

A. Requirements

The Sparrow project is separated into four main
modules: the Sparrow Server, the Sparrow Admin UI, the
Android mobile client and the Data Analysis UI.

The Server provides the data access layer, the business
logic components, the service layer and the API for
communicating with the client applications.

The Android client application provides a view for
visualizing traffic events on a map and also gives the
possibility for reporting events. The main functionalities
provided by the Android client application:

 registration and login views;

 possibility to login using social networks
(Google+, Facebook, LinkedIn);

 possibility for requesting new password (forgotten
password reset);

 possibility for reporting traffic events (camera,
warning, radar, traffic control, etc.);

 displays nearby traffic events on a map;

 possibility for sending feedback related to events;

 updates events on the map in real-time (inactivated
events, new events, feedbacks);

 sends visual and auditive notifications about
approaching events (even if the application runs in
background);

 possibility for filtering events by type.

The Sparrow Admin UI gives the possibility for the
administrator to manage the information about users and
events from the database. The main functionalities
provided by the Sparrow Admin UI application:

 login view;

 displays events and traffic cameras on a map,
providing optimizations using clustering methods;

 filtering possibilities by users and event types;

 displays users’ data (reported events, activity,
routes etc.);

The Data Analysis module provides an interface for
data source management and possibility to execute

different operations for optimizing datasets. The main
functionalities provided by the Data Analysis module:

 possibility to execute optimization operations on a
given dataset (filter duplicates, aggregate events in
a given radius, etc.);

 displays results on a map;

 possibility to save the current dataset into a
database (after optimization).

B. Architecture

The Sparrow server contains the MongoDB database,

the Backend and the Admin UI.

The Backend provides a Data Access Layer, realized

with the Spring Data MongoDB framework. It also

contains a Service Layer with business logic components.

Sub-systems are communicating with the Backend via the

public interfaces provided by the service components.

The Model package contains the main entities. The API

module is responsible for communicating with the client

application via REST services.

The Admin UI communicates directly with the

Backend, using service interfaces. The UI components

are grouped in the View package, while the controller

components are separated in the Controller package.

Figure 3. System architecture

On client side SQLite database is used. The business

logic is implemented by components from the Controller

module. The communication with the server is based on

RESTful web services. The DTO design pattern is used;

DTOs are transferred in JSON format.

The DataMining module uses Backend services and

communicates directly with the MongoDB database.

C. Using the Sparrow software

In order to use the Sparrow Android client application,

users have to register into the system. They need to give

their full name, a valid e-mail address and a password.

The system sends an e-mail which contains a validation

link. Once they validate their account, they can start to

use the application. If someone does not want to register,

he can choose to log in using social networks (Facebook,

Google+, LinkedIn). If the users forget their passwords,

they can claim another one by providing their e-mail

address and requesting a password reset.

Once the user is logged in, he can see all the

surrounding events on a map, which are represented by

different markers. If they notice a traffic event they can

report it on another view by choosing the corresponding

category. Users can get more information about an event

by tapping on the corresponding marker. They can find

out the reporting date, the distance from the event and the

event`s reliability number. On the same view they can

approve the event, send a delete request or attach a

comment to the event.

Users can modify the information given at registration on

the profile view. On the settings view they have filtering

possibilities based on event categories.

After logging into the web admin application, by

default the administrator can see all the events and traffic

cameras on a map. In case he is interested in some

specific events, or events reported by specific users, he

has the possibility to filter out the other events.

On the user management view the administrator can

see all the users registered in the system and information

about them.

The Sparrow project supports analysis and

optimization methods by the DataMining UI, which gives

possibility to manage different data sources.

Figure 6. DataMining UI

After choosing an available data source, the

administrator can run four kinds of methods: filtering by

date and reliability number, filtering duplicates and

aggregating events of the same type in a given radius.

Results are displayed on the map and the current state of

the dataset can be saved in the database.

VI. CONCLUSIONS AND FURTHER DEVELOPMENT

In its current state Sparrow is a prototype, which

mainly targets the drivers’ community. Users can get and

share information about traffic, thereby they can plan

their routes, avoiding possible obstacles and risks.

There are several further development possibilities,

functionalities, which can expand the application:

 a web interface, where registered users can

manage their data (e.g. reported events, routes)

and they can plan their routes based on the

reported traffic information;

 a web interface for media partners (e.g. radios),

where they can report events (e.g. phone calls

from radio listeners, reporting traffic events);

 possibility to integrate a configurable view in

third party web pages (e.g. a portlet visualizing

events in a specific region, integrated into a portal

hosted by a media partner);

 a closer connection between the application and

social networks (e.g. sharing the events on social

networks);

 more effective data source management,

possibility for selecting multiple data sources

within the client-applications.

ACKNOWLEDGMENT

The authors would like to thank Codespring LLC for

supporting the development process and ensuring the

infrastructure.

REFERENCES

[1] ***, (2013) MongoDB Reference Documentation [Online].

Available: http://docs.mongodb.org/manual/ .

[2] Zigurd Mednieks, Laird Dornin, G. Blake Meike, Masumi

Nakamura, Programming Android, 2nd ed., Sebastopol,

California: O'Reilly Media, September 2012.

Figure 5. User management view

Figure 4. Login view and marker information view

http://docs.mongodb.org/manual/

[3] Martin Fowler, Patterns of Enterprise Application Architecture, 1

edition ed., Addison-Wesley Professional, November 15, 2002.

[4] Rod Johnson, Juergen Hoeller and co., (2004-2012) Spring

Framework Reference Documentation [Online]. Available:

http://spring.io/docs.

[5] Clarence Ho, Rob Harrop, Pro Spring 3, New York: Springer

Science+Business Media, Apress Media LLC, 17 April 2012.

[6] Marko Grönroos, Book of Vaadin: Vaadin 7 Edition, revision 2nd

ed., Vaadin Ltd, 2014.

[7] Jeffrey Dean, Sanjay Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, OSDI'04: Sixth Symposium on

Operating System Design and Implementation, December 2004.

http://spring.io/docs

