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Abstract—The current paper presents a fine-grained image
recognition problem, one of multi-class classification, namely
determining the breed of a dog in a given image. The presented
system employs innovative methods in deep learning, including
convolutional neural networks. Two different network are trained
and evaluated on the Stanford Dogs dataset.

The usage/evaluation of convolutional neural networks is
presented through a software system. It contains a central server
and a mobile client, which includes components and libraries
for evaluating on a neural network in both online and offline
environments.

Index Terms—convolutional neural networks, dog breed iden-
tification, fine-grained image recognition, image classification,
inception resnet v2, mobile trained model, stanford dog dataset

I. INTRODUCTION

Nowadays, convolutional neural networks (CNN) [1] are
popular in different topics of deep learning: image recogni-
tion [1], detection [2], speech recognition [3], data genera-
tion [4], etc.

Several traditional image recognition methods are known:
Scale-Invariant Feature Transform (SIFT) [5], Histogram of
Oriented Gradients (HoG) [6], attribute classification with
classifiers: Support Vector Machine (SVM), Softmax and
Cross Entropy loss. However, CNNs have also gained sig-
nificant traction in this field in recent years, mostly due
to general reoccurring architectures being viable for solving
many different problems.

The current paper presents the methodology and results of
fine-tuning CNNs for two different architectures, using the
Stanford Dogs dataset [7]. This constitutes a classification
problem, but also one of fine-grained image recognition, where
there are few and minute differences separating two classes.

Convolutional neural networks are very similar to Artificial
Neural Networks [8], which have learnable weights and biases.
The difference is the filters, which process over the whole
image and are effective in image recognition and classification
problems. Deep CNNs are viable on large dataset [9] and
are even accurate in large-scale video classification [10].
Fine-tuning methods and learning results for the Inception-
Resnet V2 [11] and NASNet-A mobile [12] architectures are
presented. Furthermore, the usage of the trained convolutional
neural networks is visualized through a separate software
system employing modern technologies. This system is able to
determine the breed of a dog in an image provided by the user,
and also displays detailed information about each recognized

breed. It consists of two main components: a mobile client
and a centralized web server.

The remainder of the document is structured as follows:
Section II provides an overview of similar approaches in the
literature, while Section III presents the used and preprocessed
Stanford Dogs dataset. Section IV details the learning of
two different CNNs, with Section V encapsulating the re-
sults thereof. Providing a practical edge to these CNNs, the
accompanying software system is described in Section VI.
Conclusions are drawn and further development plans are
proposed in Section VII.

II. RELATED WORKS

The current section presents previous attempts at addressing
the problems tackled by the current research. Abdel-Hamid et
al. [3] solve a similar problem, one of speech recognition,
using traditional methods, making use of the size and position
of each local part, and PCA, while Sermanet et al. [13] and
Simon et al. [14] mention convolutional neural networks with
different architectures.

Liu et al. [15] present alternative learning methods in 2016
using attention localization, while Howard et al. in 2017 [16]
present a learning of a CNN using the MobileNet architecture
and the Stanford Dogs dataset extended with noisy data.

Similar fine-grained image recognition problems are solved
by detection. For example, Zhang et al. [17] generalize R-
CNN to detect different parts of an image, while Duan et
al. [18] discover localized attributes. Angelova et al. [19] use
segmentation and object detection to tackle the same issue.
Chen et al. [20] use selective pooling vector for fine-grained
image recognition.

The current research is based on fine-tuning CNNs and the
results thereof are reproducible on the original Stanford Dogs
dataset using the presented methods.

III. DATASET AND PREPROCESSING

The presented CNN learning methodology revolves around
the Stanford Dogs [7] dataset. It contains 120 different dog
breeds and is a subset of the more general ImageNet [21]. It
is separated into training and test dataset. Both sets contain
images of different sizes and every image is given a label
representing the embodied dog breed. The training dataset
contains 12.000 images with roughly 100 per breed; the test
data consists of 8.580 unevenly distributed images.



The first step of the preprocessing is to split the training data
into train folds and validation fold for experimental tuning of
the learning hyperparameters. Before splitting the data, the dog
images are resized to 256x256 pixels (for NASNet-A mobile)
and 299x299 pixels (Inception-Resnet V2 input).

For experimenting with the hyperparameters of the CNNs,
fine-tuning and 5-fold cross-validation is used, which in the
end produces 5 different training and validation subsets. Each
of these datasets contains 9.600 training images and 2.400 vali-
dation data. After getting the best fine-tuned hyperparameters,
the entire Stanford Dogs training dataset is used for training,
while the test data is exclusively used for evaluation.

IV. EXPERIMENTS

After obtaining the necessary formatted and resized data, the
next step is fine-tuning the convolutional neural networks. This
section presents the applied technologies, CNN architectures,
methods, hyperparameters and using the trained models as
frozen graph.

The presented problem fits into the category of fine-grained
image recognition, since the differences linking any sample
image to a certain class are few and minuscule; the CNN must
consider small key features to dissolve ambiguity. For exam-
ple, the husky and the malamut breeds present small enough
differences among them to make differentiating difficult even
for trained eyes.

A. CNN Architectures

Transfer learning [22] provides a performance boost by not
requiring a full training from scratch. Instead, it uses pre-
trained models which are taught general reoccurring features.
These models are often trained on the ImageNet [21] dataset,
which has a competition every year and some pre-trained
models are published. The learning of these models represents
fine-tuning the given dataset with the learned weights and
biases. The current research contains two different public pre-
trained convolutional neural networks, which are fine-tuned:
NASNet-A mobile [12] and Inception-Resnet V2 [11].

The NASNet-A architecture is created based on the ap-
proach of the Neural Architecture Search (NAS) frame-
work [23], by the Google AutoML [24].

The Inception-Resnet V2 is a very deep architecture con-
taining over 300 layers, which is created by the Google
developers team.

B. Data augmentation

The most common method to reduce overfitting on training
data is to use different transformations before the feedforward
pass during the training; this is called data augmentation [9].

During the learning of the CNN models, another preprocess-
ing method, augmentation, is applied. The Inception-Resnet
V2 and the NASNet-A mobile architecture uses Inception
preprocessing, which is the following function:

f(x) = (
x

255.0
− 0.5) ∗ 2.0
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Fig. 1. The adaptive learning rate during the training sessions decay
exponentially by 10% every 3 epochs. The blue is the learning rate of the
Inception-Resnet V2 with an initial value of 0.1, while the red is the NASNet-
A learning rate with an initial value of 0.029.

where x the image. Before the Inception preprocessing, the
image is randomly reflected and cropped by the TensorFlow’s
distorted bound box algorithm.

For the evaluation of the validation or the test dataset, the
applied augmentation steps include an 87.5% central crop and
the Inception preprocessing.

C. Learning and hyperparameters

The fine-tuning experiments of the convolutional neural net-
works are performed on a personal computer with a GeForce
GTX 1080 GPU, an Intel Core i5-6400 CPU and 64 GB RAM.

During the learning, a Softmax Cross-Entropy loss function
and Nesterov momentum [25] optimizers are used for the fine-
tuning of the NASNet-A mobile model and the Inception-
Resnet V2 model. During the training, the last fully-connected
layer (logits) is unfrozen and fine-tuned, while the other layers
are unchanged and frozen. This makes use of the benefits of
the pre-trained models.

The first parts of the CNN training involve hyperparame-
ter tuning using cross-validation. During the experiment the
hyperparameters are chosen empirically. After resulting in the
appropriate parameters, another phase of learning begins on
the entire Stanford Dogs training dataset, with the model
evaluated on the test dataset in this case.

Both convolutional neural network are trained with the
following common hyperparameters: a batch size of 64, an ex-
ponentially decreasing learning rate with different initial value,
where the rate decays 10% every 3 epochs (approximately
563 steps), a 0.0001 weight decay, and training for 30.000
steps. The NASNet-A mobile architecture is fine-tuned with a
learning rate with an initial value of 0.029 (see Figure 1). The
Inception-Resnet V2 is fine-tuned with a learning rate with an
initial value of 0.1 (see Figure 1). Training the mobile model
takes three times less than the Inception Resnet V2 model.

Further experimented hyperparameters include: fixed learn-
ing rates (0.01, 0.001), exponentially adaptive learning rates
(with initial values of 0.031, 0.035), default weight decay
(0.0004), different numbers of steps for training (15.000,
20.000, 20.500) and different optimizer (RMSprop).
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Fig. 2. The accuracy of the trained NASNet-A and
the Inception Resnet V2 models on the train and
test dataset.
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(a) NASNet-A mobile bottom 10 classes
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(b) Inception Resnet V2 bottom 10 classes

Fig. 3. Normalized confusion matrices depicting the bottom 10 ranking classes from the test dataset.
The y axis holds the actual labels, while the x axis shows the predicted labels in equivalent order.

D. Frozen graph

To use the taught CNN for evaluation through an API, it is
necessary in preamble to freeze the model. This step involves
freezing, saving and exporting the model of the neural network
to a single binary file including the structure and parameters.

V. RESULTS

The trained models are evaluated every 10 minutes on the
training and test dataset. In this section, we present the relevant
metrics for evaluation: accuracy (see Figure IV-C), precision,
recall (see Table I) and confusion matrices (see Figure 3). The
evaluation points are linearly distributed in time, not in number
of steps, hence the uneven step distribution.

The accuracy is monitored on the training and test datasets;
this metric represents the mean percentage of correctly classi-
fied classes on a dataset. The NASNet-A mobile architecture
achieves 85.06% accuracy on the train dataset and 80.72% on
the test dataset. The accuracy with a deeper CNN shows better
results: the Inception Resnet V2 network achieves 93.66%
accuracy on the train dataset and 90.69% on the test dataset
(see Figure IV-C). The superior performance of the latter is
not surprising, since it is a much deeper network.

Precision and recall are also measured during the evaluation
of the training and test dataset; results are presented in Table I.
The precision and the recall for the trained Inception Resnet
V2 model is better, the deeper model extracts more features
from an image and classifies better than the trained NASNet-A
mobile model.

Furthermore, confusion matrices are built in the last step of
training for both CNNs using the test data, representing the 10
best and 10 worst scoring classes (the bottom 10 are visible in

TABLE I
PRECISION AND RECALL

Metric Model Training dataset Test dataset
Precision NASNet-A 85.27% 80.03%
Precision Inception Resnet V2 93.86% 90.18%

Recall NASNet-A 85.06% 79.86%
Recall Inception Resnet V2 93.65% 89.99%

Figure 3). Examining the results, both CNNs have difficulties
differentiating between certain classes, e.g. the eskimo dog and
siberian husky, or the toy poodle and miniature poodle. Even
from the confusion matrices, the accuracies may be observed
as less for the NASNet-A mobile than for the Inception-Resnet
V2.

The top ranking classes from the confusion matrices are also
analyzed. The Inception-Resnet V2 trained model classifies
10 different dog breeds1 with 100% accuracy. On the other
hand, the NASNet-A trained model classifies only 1 breed
with 100% accuracy, namely the sealyham terrier.

To gain further insight from the confusion matrices, a statis-
tical analysis is performed, gathering how many different dog
breeds are classified correctly between percentage intervals;
the resulting histogram is visible in Figure 4. The histogram
shows that in the case of the Inception Resnet V2 trained

1brittany spaniel, chow, afghan hound, african hunting dog, keeshond,
schipperke, bedlington terrier, sealyham terrier and curly
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Fig. 4. Histogram of classified class percentages for both CNN architectures
on both datasets. A bar represents the count of classes within a range of
accuracies.



TABLE II
NASNET-A MOBILE ACCURACY WITH DIFFERENT OPTIMIZERS

Optimizer Training accuracy Test accuracy
Nesterov momentum 85.06% 80.72%

RMSprop 84.94% 80.57%

TABLE III
PERFORMANCE OF SPECIES CATEGORIZATION USING STANFORD DOGS

Method Accuracy
Chen et al. [20] 52.00%

Simon et al. [14] 68.61%
Google LeNet [13] 75.00%
Krause et al. [26] 82.6%

Liu et al. [15] (ResNet-50) 88.9%

Ours, NASNet-A mobile 80.72%
Ours, Inception Resnet V2 90.69%

model, most classes from the train dataset are classified in the
(95%, 100%] interval, while from the test dataset the most
classes are classified in the (90%, 95%] range. The test dataset
is classified well with some inaccuracies remaining. The
classified classes from train and test dataset for the NASNet-
A model have a wider spread, with a majority of the classes
falling in the (50%, 80%] range. The large accuracy difference
between the two models is understandably in correlation with
the size and complexity of the architectures.

The mentioned accuracies using the NasNet-A architecture
are achieved using the Nesterov momentum optimizer. For a
comparison, an alternative optimizer, RMSprop, is also tested;
the results are similar (see Table II).

Comparison to related work on Stanford Dogs dataset is
given in the Table III.

After the evaluation of each trained convolutional neural
network, a Grad-CAM [27] heat map visualization is made
for the NASNet-A mobile trained model (see Figure 5). The
last convolutional block ”pays attention”mostly to the heads
of each dogs on an image.

Examining the heat map images, the NASNet-A model
mostly focuses on the head of the dogs. In the second image,
which shows a German Shepherd in a different position, the
CNN pays attention also to the body. If an image contains
more than one dog, the network is interested in all of the
recognized dogs in varied percentages, and evaluates the image
taking each appeared breed into consideration. For an accurate
classification it must consider the evaluate an image, which
contains different parts of the dog including the head. The
displayed images are evaluated correctly by the NASNet-A
mobile trained model.

Using different data augmentation: random image rotation
between 0 and 15 degrees, random zooming or 87.5% central
cropping does not help to improve the accuracy of the trained
models.

The alternative hyperparameters presented in Section IV-C
(fixed vs. adaptive learning rates, weight decay and step
counts) prove to not improve the accuracy or other valuable
metrics after training the CNNs.

Fig. 5. Grad-CAM visualization with heat maps for the last layers of
the NASNet-A mobile trained model. The last convolutional block ”pays
attention” to the warm colored parts of the images (mostly to the heads of
each dogs), while the cold colors represents the less interested parts of the
image. These pictures are not part of Stanford Dogs dataset.

VI. THE SOFTWARE SYSTEM

The usage of the trained convolutional neural networks
is presented through a software system, called Sniff!. Its
associated mobile application gives the opportunity for users
to take a photo or select an existing one from the gallery
in a mobile application, which not only classifies the image,
but also displays detailed information about each evaluated
breed. The displayed data serves educational and informative
purposes.

The software system consists of two component: a central
server written in the Go programming language, and a mobile
client realized in React Native. The components communicate
via HTTP requests/responses.

The server contains a classifying module using the Ten-
sorFlow Go library; it loads the trained convolutional neural
network, preprocessing and evaluating images. The Inception
Resnet V2 and NASNet-A model are both runnable on the
server, since a desktop machine can make use of more
CPU/GPU resources for a faster evaluation. By default, the
Resnet model is used, since it reaches higher accuracies.

The results of the evaluation for an image are for every
classes, the most classes are evaluated with 0% percentage.
To avoid the wrong classification with low percentage there is
set a threshold on the server and also on the mobile client.

The mobile client can take an image with the camera of the
smartphone or import one from its gallery, and submit it for
classification. The process can happen online using the central
server for a faster classification, or offline using the phone
resources in case of a lacking network connection. Offline
evaluation is facilitated by React Native Tensorflow [28]
wrapper library. Figure VI shows the usage of the Sniff!
application.

The app uses the NASNet-A mobile trained model, which
loads every evaluation into the memory of the device; this
depends on the resources of the phone. The memory is freed
after the evaluation.

The app displays detailed information about the detected
breeds, with data web scraped from A-Z Animals2 and dog-
time.com3.

2Source: https://a-z-animals.com/
3Source: http://dogtime.com/
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Fig. 6. Main components in the Sniff! application.

VII. CONCLUSIONS AND FUTURE WORK

Two different convolutional neural network architectures
have been presented: the NASNet-A mobile architecture and
the Inception Resnet V2 deep architecture.

The architectures have been tested on a niche image
classification problem: that of recognizing dog breeds. The
pre-trained networks are fine-tuned using the Stanford Dogs
dataset.

Results are promising even for the smaller, mobile-friendly
CNN, reaching only 10% less accuracy than the deep Inception
Resnet V2 model.

We have also presented a usage of the fine-tuned convolu-
tional neural networks through a software system, called Sniff!:
a mobile application, which can determine the breed of a dog
from an image (even without an Internet connection).

The convolutional neural networks can be further developed
by: Generative Adversarial Nets (GAN) [4] to extend the
training dataset, using other loss function like center loss
[29], training other convolutional neural network architectures,
expanding the dataset with other popular dog breeds, using de-
tectors for locating multiple dogs on an image and optimizing
the server and mobile classification.
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