
Program Guide and Data Management
Software System for Theaters

István Bege
Babes-Bolyai University
Cluj-Napoca, Romania
begeisti@yahoo.com

Melinda Tóth
Babes-Bolyai University
Cluj-Napoca, Romania

melindatoth24@yahoo.com

Károly Simon
Babes-Bolyai University
Cluj-Napoca, Romania

simon.karoly@codespring.ro

Zoltán Szilágyi
Codespring

Cluj-Napoca, Romania
szilagyi.zoltan@codespring.ro

Levente Kintzel
Codespring

Cluj-Napoca, Romania
kintzel.levente@codespring.ro

Abstract—There is an increasing demand for applications in
which users can easily browse different events organized by
different institutions or organizations in a single place. Among
these events are the following: theater or movie shows, cultural
programs, presentations, meetups, etc.

Most of the institutions (e.g. theaters) have their own web
pages, where the programs along with the related news and pieces
of information are published. These websites differ from one
another and sometimes it may become difficult for the users to
digest the required pieces of information from them. The aim of
the software system is to offer a solution for this problem. With a
single mobile application, using a uniform user interface they can
browse the program of all those institutions, which uploaded their
events into the system through the web administration interface.
In the current version of the system mainly theaters are targeted
but the solution will be generalized to support other institutions
too.

The article presents the PlentyGO system, which contains two
client applications and a central server.

I. INTRODUCTION

The current version of the PlentyGO software system can
be used as a digital guide for theater shows, giving a whole
new approach for theaters to publish their events. It also
provides a solid advertisement possibility for the institutions,
popularizing their shows to present them in a widely accessible
manner.

Currently, if one is going on a trip to another city and
decides to see a show in the city’s theater, he/she has to search
for its website to find its location and browse its program.
Using the PlentyGO application this process becomes easier.
In case the theater’s repertoire is uploaded into the system,
the tourist can simply open the PlentyGO Android application,
where the shows can be easily filtered by city, by date and by
institution. By tapping a show in the list view a full description
is going to be displayed, and in case this is the right event, the
application can navigate the user to the respective location.

The main advantage of the system is that the content can
be internationalized, the data can be provided in multiple
languages. The supported languages can be selected by the
theaters. The users also have the possibility to setup their
preferred language within the mobile application. The data
will be downloaded by the Android application during the
synchronization process, but only in the selected language,
which by default is the device’s main language.

There are several similar solutions on the market targeting
festivals or conferences. There are white label solutions, like

Greencopper or Appmiral, and some centralized platforms
and general applications are also available. For example,
FestivApp [1] is a system developed and published by a team
consisting partially of the present thesis’s authors. It is a
general application, but it can be also used as a white label
solution. Currently the system is already used by more than
50 festivals, thousands of users, and the team also received
several requests from theaters and other institutions. However
FestivApp was designed to handle large events (e.g. a festival
or conference), with a relatively short duration (several days).
Managing the periodic events organized by an institution is
not the same problem. So, the team decided to build a new
solution for these different requirements. The architecture of
the PlentyGO system is similar to FestivApp, but the model
and the features are different, and there are also differences in
the selected technology stack.

II. THE PLENTYGO PROJECT

A. Main features

The theater shows can be browsed using the Android appli-
cation. The selected language can be changed in the settings
menu. The application can be used without registration, but
some features will be available only for registered users. The
registration could be done via Facebook or Google.

The main screen of the application contains a list view with
the institutions (currently only theaters are supported), and a
timeline view with the shows. From here the users can navigate
to data sheets describing shows and theaters, and they can get
detailed information about these entities. There is a possibility
to filter the shows by city, theater and date. The shows and
institutions can be marked as favorites and these favorites can
be accessed easier within a separate list. Using Google Maps
the application can navigate the users to the exact location of
the shows.

The Android application can be used even if there is no data
connection. The downloaded data is cached using the local
storage of the mobile device, it can be accessed offline, and it
can be synchronized later, once data connection is available.

There are two administrator roles: system and institution
(theater) administrators. They can modify the content using
a web user interface. There is a possibility for these users
to select the supported languages (currently the system has
support for Hungarian, Romanian and English). Institution ad-
ministrators can see and update only those theaters and shows,



which are managed by them. For the system administrator
all the institutions and shows are visible and editable. New
institution administrator users can be registered only by the
system administrator and institutions can be assigned to them.

The administrators can setup the supported languages for
each theater and show, and the corresponding content has to
be provided in these languages. A cover photo can be uploaded
for each institution and a poster image for each show. Multiple
start dates and times can be introduced for each show.

Using Google Maps the administrator users can set the
location of a theater within the web application. It is possible
to give the street address also in multiple languages , and
assign it to a city. New cities can be introduced by system
administrators.

The data used by the client applications is provided by the
central server. Its main purpose is to authenticate the users
and their requests, to handle these requests and to manage the
persistent data.

B. The structure of the system

The central component of the system is a Java server, which
stores the data in a MySQL relational database. These data will
be queried by the client applications using a RESTful API. In
order to support offline usage the data is also persisted by the
Android client application after the synchronization process,
using a SQLite database.

C. Architecture

The system is composed by three main components: a
central server, an Android and a web client application. The
communication between these components is implemented
based on the Data Transfer Object (DTO) design pattern[2],
within the commons module.

The server is composed by a backend and by an API
layer. In the backend a Model module is responsible for
representing the main entities of the system. The Repository
module contains a JPA repository which is responsible for
providing the Data Access Layer. The last module in the
backend is the Service module, which contains the business
logic.

The API layer contains a Resource module, where the REST
requests are handled. It calls the Service module to execute the
given request and to build the response. Before the response
will be sent, the entities are converted into DTOs by the
Assembler module.

The web client is composed by two layers. A Service layer
is responsible for the communication with the server’s API and
it provides the data to other web components. The UI module
contains the controllers and the corresponding HTML views
for the web pages. The controller contains the view logic and
it fills up the view with data.

The Android client has its own Model module for data
representation and its own Repository module for persisting
the models using a SQLite database. The conversion between
the DTO and model objects is performed by the Assembler
module. The API is responsible for the communication with

the server’s API. The UI layer contains the components needed
by the view. The Controller provides the connections between
these layers.

III. THE SERVER

Both client applications are supplied with data by the central
server. This component is the most complex part of the system.
It is written in Java programming language using Spring
technologies.

A. Technologies
Spring[3] is an open source application development frame-

work for the Java platform. It supports the development of
complex enterprise software systems and web applications.
The life cycle of the components is managed by the Inversion
of Control (IoC) container and the dependencies between
them are also automatically resolved based on the Dependency
Injection (DI) design pattern.

The Spring Boot[4] module made the project configuration
easier and provided the embedded web server. The module
favors the convention over configuration design paradigm.
The application can be configured using simple Java classes
without complex XML files. The central properties are stored
in an external YAML file.

The client applications are served with data by the RESTful
API. The API is implemented using the Spring Web MVC
module which also provides the serialization and deserializa-
tion process for JSON objects. It also gives a possibility to
upload multi-part files.

To secure the API, the server uses the Spring Security[5]
framework. Its main task is to authenticate the users and to
verify their roles for each request. This is done by the Spring
Security OAuth2 module, which provides limited access to
HTTP services for external applications.

B. Data Model
The main entities of the system are simple POJO classes

annotated with JPA annotations (@MappedSuperClass, @En-
tity). On top of the class hierarchy stays the AbstractModel,
which contains a Universally Unique Identifier (UUID) at-
tribute, supporting the exact identification of the entities within
the distributed system. Its child class is the BaseEntity class,
which has a Long identifier corresponding to the primary key
in the database. Those models which are transferred to the
mobile application are derived from the SynchronizableEntity
superclass. This class contains a deleted flag, which by default
is false, and a lastModified timestamp, which stores the date
of the last modification in UTC. The flag indicates the validity
of the entity. If its value is true, the entity has been deleted on
server side, so it should be deleted from the client database too.
The timestamp is used for the mobile synchronization process.
Only those entities will be returned by the API, which have
been updated after the given timestamp. The timestamp will
be the date-time combination of the last synchronization.

There is another superclass in the hierarchy for multilingual
entities like institutions or shows. This is the MultilingualEn-
tity class, which extends the SynchronizableEntity superclass.



Fig. 1: The main components in the PlentyGO software system

It no longer uses the @MappedSuperClass annotation like
its ancestors. The @Entity, @Table, @Inheritance(strategy =
InheritenceType.JOINED) triplet is used, which means that it
has its own database table and this is the base table for all the
multilingual entities. Only the specific attributes are stored in
the tables corresponding to the entities derived from this base
class (city, location, institute, etc.) and join operations are
performed at select statements. The MultilingualEntity class
holds a default locale and a set of available locales which
are supported by the system. The collection holds only those
locales in which the given entity’s multilingual data is filled.
This becomes very handy during the synchronization process.

C. Content internationalization

Internationalization the content was one of the most signifi-
cant challenges of the development process, because it affects
the server and the client applications too.

The Repository layer on the server must know how to handle
multilingual data. This layer is provided by the Spring Data
JPA[6] module and behind that the Hibernate ORM framework
is used as JPA implementation. The first task was to configure
the framework correctly by adding JPA annotations to the
model classes and attributes.

At the data representation level each multilingual entity is
represented by the MultilingualString class. It is extended from
the BaseEntity and has a single Map attribute. The collection
holds the multilingual data, where the key object is a locale
supported by the system. The collection’s value is a Multi-
lingualData object, which has a single string attribute. This is
the translated text corresponding to the given locale. The class

uses the @Embeddable annotation instead of @Entity, because
there is no need to identify these strings inside the application.
Their use is meaningless without the corresponding key locale.

The relationship between a multilingual data and its trans-
lations is one-to-many, so two tables are required to store
these in the database. The Map collection is described by three
annotations: @ElementCollection, @MapKeyJoinColumn and
@CollectionTable. The first one indicates the type of the
relationship, the second one gives the name of the key object
in the collection table defined by the third annotation. The
column for the JOIN operation is also given in the last anno-
tation. Each entity which holds a multilingual data declares a
MultilingualString object at the class level.

While the data is synchronized only in a specified language
by the Android application, the data can be managed in all
the available languages within the web user interface by the
administrators. Because of this, two DTO classes have been
implemented for each multilingual entity in the commons
module. Those with Localized prefix contain data in a single
language, while those with Multilingual prefix contain data in
all supported languages.

Some of the DTOs need more than one Assembler class.
Because of this, each model with multilingual attribute has
two Assembler classes. Those that extend the Multilingual-
BaseAssembler class convert the models to multilingual DTOs
and vice versa, while those that implement the Localized-
BaseAssembler interface convert the models to localized
DTOs. The localized DTOs are never converted to models,
because it would lead to data loss.



Fig. 2: The institutions menu on the web administration interface

D. Integration of Social Networks

The Android application gives a possibility for users to
login via social networks (Facebook and Google). The selected
provider returns an access token for the application, however
the user cannot be identified on the server with this access
token, because the authentication has happened against a third-
party server. To resolve this issue, an authentication process
has been implemented on the server, the so-called ”Reverse
OAuth authentication”. The process essentially obtains an
external access token from a given provider, then send it
to the server along with the provider’s name. The server
then connects to the given provider’s authorization server and
verifies the user’s credentials using the received access token.
In case the user does not yet exist in the database, the server
creates it, sets its role and its type according to the provider.
Then saves it into the database. After the user is saved, the
server simulates an authentication request. The result is an
access and a refresh token, and these tokens are returned to
the mobile client. The Android application now can use these
tokens to identify the user during the interactions with the
server.

IV. THE WEB ADMINISTRATION INTERFACE

The administration user interface is a stand-alone web
application, which has no physical connection with the central
server. It has its own web server, which serves its static files.
As soon as these files are served by the server to the browser,
the web page behaves as a single-page application and it
generates dynamic content using JavaScript.

The application is developed using the AngularJS[7] fron-
tend framework. The framework is responsible for managing
the web components, it resolves the dependencies between
these components based on the DI design pattern and provides
a data binding function, which automatically resolves the
DOM manipulation when the corresponding model is updated
in the background. TypeScript is used as script language,
because it supports the object-oriented programming paradigm
and it gives the possibility to use basic types as well. This
script language is not directly supported by the browsers,

so a Gulp task compiles it to plain JavaScript. The user
interface is developed using the AngularJS Material Design[8]
framework, which is the reference implementation for the
Google’s Material Design specification. The design is based
on Material Design guidelines.

The data is represented by TypeScript classes. With some
differences, these classes correspond to the DTO objects from
the commons module. The main entities are the Institute, Show,
City, Location and User classes.

The web application uses the Restangular[9] module to
send the REST requests to the server. The module provides
these functionalities by just a few lines of code and all HTTP
methods are supported by the framework. The requests are
executed asynchronously, so there is no guarantee when the
actual answer arrives. To handle this, asynchronous functions
are returning promises, to which callback functions might be
assigned, whether the promise was fulfilled or rejected.

Both system and institution administrators are able to select
their most appropriate language on the web page. Currently
they can select English, Hungarian and Romanian. The appli-
cation uses the angular-gettext module to display the multi-
lingual web labels on the selected language. Its use is quite
simple, it is enough to annotate the multilingual labels in the
source code with a corresponding HTML tag. Having every
label annotated, a Gulp task processes the source files and
generates a template file, which contains all the translatable
strings. With the help of the Poedit editor, these strings can be
translated to any language. The translations are saved into files
with .po extension. The file names correspond to the language
of the translation. In order to use these translations in runtime,
a Gulp task converts the po files to JSON format and adds
them to the classpath. In this way the internationalized data
can be downloaded by the clients. When the page language is
changed, the module loads the corresponding JSON file and
all the multilingual labels are automatically changed on the
UI.

Each institution administrator has the possibility to manage
the data, but only for the assigned institutions. The server
returns only those institutions and shows, which are managed
by the current user. For implementing this mechanism, it was
essential to identify the web users. After an email address
and a password is entered by the user on the login form, the
AuthService web component sends an authentication request
to the server. If the given credentials are correct, the server
generates an access token together with a refresh token and
sends it back to the client. These tokens are JSON Web Tokens,
in which the user’s name and his/her roles are also encoded.
The storage of the tokens is provided by the HTML5 Locale
storage feature, which saves the given data into the user’s
browser. The access token is added to every HTTP request
header by a HTTP interceptor. In this way the server always
knows who is the sender.

Each token has its own expiration date. If the server signals
with the corresponding HTTP status code that the token has
expired, the interceptor calls the AuthService to renew that
with the refresh token. If this token is expired as well, the



Fig. 3: Theater list and detailed view within the Android application.

application requires a new login from the user.

V. ANDROID CLIENT

The structure of the Android application follows the MVC
design pattern. The model classes are responsible for data
representation, the Activity classes act as controllers and the
UI components are defined in XML files, together with the
relationships between them.

The same way as on the server, the model classes are simple
POJOs with the corresponding OrmLite[10] annotations. The
main entities are the Show, ShowDateTime, Institute, Location,
City and User. The FavoriteShow class represents the user’s
favorite shows. Each show has a genre (ShowGenre), each
user has a type (UserType). These attributes are enums. The
AbstractModel stays on the top of the class hierarchy, while
the SynchronizableEntity abstract class stores the entities’ state
using the deleted flag.

In the Repository layer a DatabaseConfigUtil class gener-
ates the database schema according to the model classes. The
CRUD operations are provided by Data Access Object (DAO)
classes. Every model class has its own DAO instance with the
necessary database operations. The instantiation of the DAO
classes is done by a DatabaseHelper class, which operates as
a Factory. It returns only a single instance for each DAO.

The views are provided by Activity classes, while the user
interactions are handled by Fragments. When the application
starts a LoginActivity appears for the user. From here, the
application navigates to the main view, which contains two
tabs. The first tab contains the theater list, which is provided
by the InstituteFragment. The second tab is provided by the
ShowFragment, and it contains a list with available theater
shows. On the ShowDetailsActivity users can get detailed
description about a show. The InstituteDetailsActivity provides
this function for theaters. Tapping the corresponding menu
icon in the main view, a MenuDrawer appears where users

can select the content’s language. This is done by the Set-
tingsActivity class.

The communication with the server’s RESTful API is
implemented using the Retrofit[11] library and the OkHttp
client. For each entity a Retrofit interface is implemented,
which contains the REST requests addressed to the server.
The library automatically converts the JSON response objects
to the corresponding DTO objects. The Assembler module
converts the DTOs to models.

There are two authentication mechanisms for the mobile
users: they can login into the application using a social
network account, or as a simple guest user. When the login is
performed through a social network, the application requires
an access token from the selected provider and sends it as
a JSON object to the ”/oauth/social” endpoint. The server
verifies the validity of the token, and if the authentication was
successful, it returns its own token pair. The application uses
the received access token in order to be authenticated on the
server by signing each request. In case that the device has no
data connection, users can login with a simple guest user and
can browse the content which was synchronized previously.

The synchronization mechanism is done by the SyncService
class. It contains a function for each entity, that queries only
those data from the server, which were updated after the last
synchronization. The timestamp of the last synchronization is
saved for each entity in the application’s Shared Preferences
storage. As a response, the server sends a list of Multi-
lingualEntityDTO objects along with the actual timestamp
in UTC. Every MultilingualEntityDTO contains the entity’s
id, a deleted flag, a default locale and a list of available
locales. When this response arrives to the client application,
each available entity is queried by its id, one by one in
the application’s language (if it is supported). In case the
entity does not provide its content on the selected language,
the API queries it corresponding to its default locale. Those
entities whose deleted flag is true, will be deleted from the
application’s database. As a last step, the API updates the
received timestamp for the entity in the Shared Preferences.

VI. THE USE OF THE PLENTYGO SYSTEM

A. Web user interface

After a successful login, the user might select the most
suitable language for displaying the web page. The first menu
is the theater management (Fig. 2), which contains a list with
the available theaters. For system administrators all the theaters
are displayed in this list, while institution administrators can
see only the theaters assigned to them. For each of the theaters,
administrators can set the list of supported languages in which
the institution provides the content. There is a possibility to
give the exact location of the theater using Google Maps, so
that mobile users can navigate there easier. To upload a cover
image for an institution, it is sufficient to click on the existing
image and select a different one.

The second menu contains the management of the shows.
For each show, the list of supported languages can be set



Fig. 4: Show timeline and detailed view.

separately. The users can add start date-time combinations for
each performance using a modal window.

The third menu is reserved exclusively for system adminis-
trators, where they can add more cities to the system. These
cities can be assigned to locations, in this way the shows can
be filtered by locations within the mobile application.

The last menu is where the user management happens. The
system administrator can add new users and assign theaters to
them.

B. Android client

Users have to be authenticated by the server before using
the application. This could be done when the application is
launched for the first time. Performing this once is sufficient,
as the application saves the settings and the login process
is automatically repeated when the application is launched
subsequently.

In the main menu of the application, users can switch
between two tabs. One stands for the list of institutions (Fig.
3), whereas the other contains their shows. By tapping an
institution on the first tab, a description view appears, where
the user can get detailed information about the theater in the
application’s language. If the theater’s location is given, a
”Take me there” button appears on the screen. By pressing
it, the Google Maps application starts and shows the exact
location on the map and it also offers a navigation possibility
for the user.

The second tab contains a list with available shows, which
are displayed in a timeline view (Fig. 4). There is a floating
button on the bottom right side of the screen, which provides
filtering features. The displayed shows can be filtered by
favorites, cities, theaters and dates. Pressing the heart icon
on the right side of the show will mark it as a favorite. The
favorite list can be accessed later more easily. Tapping a show
element, a detailed description screen can be opened for the

selected event. Here the user can find out the show’s genre,
the name of the director, the list of actors, etc.

On the left side menu users can set the preferred language
for the content and also can log out from the application. After
a logout operation a new login will be required from the user
at next start up.

VII. CONCLUSIONS AND FURTHER DEVELOPMENT PLANS

PlentyGO is already a functional software system and it
can be used by theaters for managing and publishing their
data. The mobile application can be used by the users as
a digital guide for theater shows. The shows published by
different institutions can be browsed on a unified UI. For data
synchronization data connection is required, but the mobile
application can also be used in offline mode, displaying
previously synchronized and cached content.

During the development process several new ideas have
emerged as further development possibilities. For example:

• the possibility for assigning more media contents to
theaters and shows;

• introducing a notification system to notify the users if a
new show is added to the repertoire of a favorite theater or
a favorite show will be scheduled again for presentation;

• the users could share their opinions and experiences about
theaters and shows in comments and a rating system
could also be implemented;

• extending the system by introducing new types of in-
stitutions and events (e.g. cinemas, museums and other
cultural institutions, sport facilities, etc.);

• as a long term goal, a new module could be introduced,
which is suitable for ticket purchasing and for seat
reservation.

REFERENCES

[1] A. Kiss, Z. Szilágyi and K. Simon, FestivApp: Program manager and
browser system for large events, 2016 IEEE 14th Symposium on Intelli-
gent Systems and Informatics (SISY), 2016.

[2] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley Professional, 2012

[3] R. Johnson, et al., The Spring Framework - Reference
Documentation, [Online], Available: http://docs.spring.io/spring-
framework/docs/2.0.x/reference/index.html

[4] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkin-
son, M. Overdijk, C. Dupuis, S. Deleuze, M. Simons, Spring
Boot Reference Guide, [Online], Available: https://docs.spring.io/spring-
boot/docs/current-SNAPSHOT/reference/htmlsingle/

[5] B. Alex, L. Taylor, R. Winch, G. Hillert, Spring Security
Reference, [Online], Available: https://docs.spring.io/spring-
security/site/docs/current/reference/htmlsingle/

[6] O. Gierke, T. Darimont, C. Strobl, M. Paluch, Spring Data JPA - Ref-
erence Documentation, [Online], Available: https://docs.spring.io/spring-
data/jpa/docs/current/reference/html/

[7] Brad Green, Shyam Seshadri, AngularJS, O’Reilly Media, 2013
[8] AngularJS Material - Introduction, Google, [Online], Available:

https://material.angularjs.org/latest/
[9] AngularJS service to handle Rest API Restful Resources properly and

easily, [Online], Available: https://github.com/mgonto/restangular
[10] Gray Watson, OrmLite - Lightweight Object Relational Mappin (ORM)

Java Package, [Online], Available: http://ormlite.com/
[11] Lars Vogel, Simon Scholz, David Weiser, Using Retrofit

2.X as REST client - Tutorial, [Online], Available:
http://www.vogella.com/tutorials/Retrofit/article.html


