
OptInv: Software as a Service Solution for

Inventory Optimization

Réka Győri, Tamás Imecs, Enikő Török, Károly Simon

Codespring LLC, Babeș-Bolyai University

gyori_reka92@yahoo.com

torok_eni@yahoo.com

tomy_imecs@yahoo.com

simon.karoly@codespring.ro

Abstract—The presented OptInv software system provides

support for inventory and sales optimization.

Generally, small and medium enterprises cannot afford

expensive Enterprise Resource Planning (ERP) systems,

with effective supply management modules. Supplies are

often managed based only on former experience.

Inconvenient situations can occur when an order cannot be

accomplished because the needed product is missing, or

when the money invested in some products becomes a waste.

Using the right methods and tools, these problems can be

eliminated.

The aim of the OptInv project is to provide a Software as

a Service (SaaS) solution for this kind of problems. OptInv

imports data from accounting software systems and

provides statistics about products, providers and sales.

Products can be categorized, the value of the stock can be

estimated, the consumption can be predicted and in this way

the inventory can be optimized.

I. INTRODUCTION

The presented OptInv project provides support in
inventory optimization for companies working with
commerce. Keeps count of the inventory stock, provides
different statistics and reports, which are shown on a web
user interface.

Generally, ERP systems provide effective solutions for
maintaining and managing the inventory. However, not
every software provides efficient supply optimization.
Small and medium enterprises cannot afford expensive
ERP systems, so the inventory is managed based only on
former experiences. This is a major problem, which can
lead to unpleasant situations: an order cannot be
accomplished because of the lack of the desired product,
or money is wasted in huge amounts of unwanted
products. By using the right methods and tools these
problems could be avoided, money and inventory space
could be saved and used more wisely.

By using the OptInv software users can inspect
statistics related to their stocks. Statistics are made based
on data imported from accounting software databases (e.g.
HamorSoft - hMARFA).

There is possibility to import data related to products,
sales and providers from different accounting software
systems. Based on these data, the system generates
different reports. In this way, the user can easily see, if
there are on stock large quantities of products with small

average consumption. Frequently required products can
also be observed. In this way, orders can be made
effectively and costumer demands can be easily satisfied.

Using the application products can be easily
categorized. This could be a great advantage, because
recurrent, sporadic and seasonal products have to be
managed in different ways, different prediction methods
have to be used for these categories.

II. TECHNOLOGIES

OptInv is built on the Java Enterprise Edition (JEE)
platform, taking advantage of the platform services, such
as security and transaction management. On server side
Enterprise Java Bean (EJB) components are used. The
persistence layer is implemented using EclipseLink, the
reference implementation of the Java Persistence API
(JPA). The EclipseLink multi-tenancy support is also
used. Beyond the above mentioned technologies, the
software’s quality is also ensured by other enterprise
development frameworks.

A. Java Enterprise Edition

Java Enterprise Edition (JEE) [1][2] supports the
development of multilayer, distributed, multi-user,
scalable and secure enterprise applications. Glassfish is
the reference implementation of the JEE specification, the
application server used by the OptInv project.

The JEE frameworks provide different services to
facilitate the development process, such as resource
management, dependency injection, persistence,
transaction management, security, timer services, etc. In
this way, developers can concentrate on the business logic
and functionalities.

The server side JEE components have their own
functionalities and they can communicate with each other.
There are two main categories: web components, managed
in the server’s web container and EJB components,
managed in the server’s EJB container.

B. Enterprise JavaBeans

OptInv is using Enterprise Java Bean (EJB) [3]
components on server side.

There are two categories of EJBs: Session Beans and
Message-Driven Beans. There are two types of session
beans: stateless session beans and stateful session beans.
Stateless session beans do not preserve any state
information between consecutive calls. Stateful beans are

mailto:gyori_reka92@yahoo.com
mailto:torok_eni@yahoo.com
mailto:tomy_imecs@yahoo.com

assigned to a client, and can preserve a conversational
state through multiple calls. Message-driven beans are
used for asynchronous message processing. Usually, they
work as listeners for JMS (Java Message Service)
messages; business logic procedures are executed as a
reaction to these messages.

The communication between the components is realized
through interfaces. Session beans can implement three
types of interfaces: Local, Remote and Endpoint
interfaces. The methods inside a Local interface can be
accessed only from components which are inside the
container. Remote interfaces enable remote clients to use
the component’s services. Endpoint interfaces are used in
SOAP protocol-based web services.

Within the OptInv system stateless session beans are
used in the repository, service and data import layers. The
communication between the beans and the web
components is realized using Local interfaces.

C. Java Persistence API and EclipseLink

The Java Persistence API (JPA) [2] can be considered
an abstraction layer over the Java Database Connectivity
API (JDBC) and it is a standard for object-relational
mapping (ORM) in Java. It specifies meta-information
required for mapping, an object oriented query language
(Java Persistence Query Language - JPQL) and a
dynamically built query support, the Criteria Query API.
The JPA 2.1 specification is part of the Java EE 7
platform and different JPA implementations are provided
by JEE application servers (e.g. EclipseLink, Hibernate
etc.). EclipseLink [4] is the reference implementation of
the JPA specification. This framework is used in the
OptInv project.

The data model is represented by JPA entities. Object-
relational mapping can be done in two ways, by using
annotations inside the entity classes or by xml deployment
descriptors. In the OptInv project the annotation
mechanism is used. The relations between the entities can
be unidirectional or bidirectional and can be also
categorized by cardinality (one to one, one to many, many
to one, many to many). These relations are also defined by
JPA annotations. JPQL is used for creating queries.

Data manipulation is realized by using a central service,
the EntityManager interface. When persistence operations
are performed, the entities are attached to an
EntityManager and become managed and synchronized
with data stored in the database. Entities can also be
detached from the manager, and in this case they are no
longer synchronized. In the OptInv project transaction-
scoped entity managers are used, so the entities are
managed only during transactions.

D. Transaction management

The Java Transaction API (JTA) specification is
supported by JEE application servers. Transactions can be
used either in declarative mode or by program commands.
In the second way the beginning (begin transaction) and
the ending (commit or rollback transaction) of the
transaction has to be marked explicitly.

In the case of declarative transaction management,
transactions are managed by the container. By given
attributes the EJB container decides the beginning and the
end of the transactions.

In the OptInv project there are container managed and
component managed transactions. Component managed
transactions are used by the data importer module.

E. Java EE security and JAAS

The JEE security mechanism is based on the Java

Authentication and Authorization Service (JAAS). In the

JAAS model users can have different principals, which

are assigned to different roles and each role has certain

rights. All these together form a security realm, which

can be configured on the application server. Realm data

(usernames, passwords, user groups) can be read from

files, databases or from other sources. In the OptInv

application a JDBC realm is used, the data is read from

the system’s database.

There are two ways to provide security: in a declarative

way or controlled by the program. The declarative

method is based on annotations. If the security is

controlled by the program the caller’s principal can be

requested runtime from the session context.

Within the OptInv project the security layer is very

important in order to protect the companies’ data. On the

component level the declarative model is used. The

security of user requested data is controlled by the

program. All service methods are intercepted and in the

interceptor the caller’s principal is retrieved from the

session context. Based on the caller’s company the

multitenancy support [5] is enabled. In this way users can

only access data owned by their company.

F. Interceptors

In JEE interceptors are used for reacting to

component’s lifecycle events or method calls. Similar to

aspect oriented languages, they are used to implement

cross-cutting functionalities.

Interceptors can be declared by annotations or in

deployment descriptors, and they can be implemented

either in the target class or in a separate class. The

methods of an interceptor can be automatically triggered

by instantiation, removal from the container, timeout or

method call. There can be multiple interceptors assigned

to a class or method, the execution order can be defined

by a priority level.

In the OptInv project all service methods are

intercepted, and before the execution of the methods the

caller is identified. This is how the multi-tenancy of the

application is realized.

G. EclipseLink based multitenancy

In order to support multiple companies the

multitenancy principle is used. The OptInv application

has a single database and can serve multiple clients at the

same time due to its multitenancy support.

There are several frameworks supporting

multitenancy, EclipseLink is one of them. The model can

include tenant aware and non tenant aware entities in the

same time. The tenant-id can be set either while

configuring the persistence context, or dynamically when

an EntityManager is created.

In the OptInv application the configuration for the

multitenancy is made by annotations. A single-table

strategy is used. Tenant ids are set dynamically by

interceptor methods before each service call.

H. Other technologies

The OptInv web interfaces are created using Vaadin

[5], a Java-based web development framework. On the

model level data validation is solved using Hibernate

Validator, an implementation for the Bean Validation

specification. Restrictions are specified by annotations.

This method is supported by the Vaadin framework, too,

so it is also used for validation on the UI level.

JDBC is used by the data importer module. The

OptInv system communicates with the external databases

(accounting software databases) using the JDBC API. In

the case of Hamor databases a JDBC-ODBC bridge is

used for importing .dbf files.

Logging is implemented using the slf4j API and the

log4j framework.

III. DEVELOPMENT TOOLS AND METHODS

The OptInv project has been developed based on Agile
principles, using Scrum methods and Continuous
Integration practices.

Mercurial serves as an open source, distributed source
code management tool, RhodeCode is used for central
repository management. Project management and issue
tracking is supported by Redmine. The specifications and
other documentations are shared between developers
using the XWiki platform.

OptInv uses Apache Maven as build- and dependency
management system, and Artifactory for repository
management.

Code quality is ensured using SonarQube, a freely
available, open-source code analyzer tool. Its
responsibility is to search for duplicates, calculate test-
coverage and complexity measures, check for common
bad-practices and coding conventions.

Jenkins is a continuous integration tool. Using the
version control system, it has the ability to build maven
projects, and to run automated tests.

OptInv uses Glassfish application server and MySQL
database management system.

IV. THE OPTINV PROJECT

In this section the main functionalities of the system

are summarized, the application’s data model and

architecture is presented and the main aspects of

implementation are briefly described.

A. Basic functionalities

The system is designed as a Software as a Service

(SaaS) solution (Figure 1).

In the center there is an application server. Database

files are uploaded to this server and the data is imported

into the internal database. The system can be configured

by administrators. Based on the imported data statistics

are calculated and results can be visualized on a web

interface. The design also includes a public API for

communicating with third party ERP systems and a

notification system for mobile client applications, but

these parts are not yet implemented in the current version.

The project in its current state is a prototype, which

contains the OptInv Backend, the OptInv Web and the

OptInv Server subsystems.

The OptInv Backend provides the repository and the

business logic layers. Includes the data importer module,

which imports data from uploaded files. The data

analyzer component is also provided by the Backend

subsystem.

Figure 1. OptInv, Software as a Service

The OptInv Web is a web application, which

communicates with the Backend. The data importer

module can be configured for each company separately.

The Web module also provides a view for uploading

files. Reports and statistics generated by the data analyzer

module can be visualized on other views.

B. The model

Entities are organized in a hierarchy. The

AbstractModel is the abstract base class, which defines a

universally unique identifier for each entity. It is extended

by the BaseEntity abstract class, which defines a unique

identifier corresponding to the primary keys and ensures

serialization support for the entities. Entities are derived

from this BaseEntity class.

The main entities of the OptInv project are: Product,

Sale, ProductInfo, StockInfo, AcquisitionDetails,

Provider and Invoice. Using these data different values

can be calculated: the price of a product, the amount on

stock etc. Operations and parameters are stored in

Calculation objects, and their results are also cached in

Result objects.

C. Architecture

The system has a multilayer architecture, the model is

shared between these layers (Figure 2). The data access

layer communicates with the MySQL database

management system. The data importer module saves the

data into the central database through the repository layer.

The current version of the system has a Hamor-specific

importer, but it can be easily extended with other

importer modules.

Above the repository layer, there is a business logic

layer. The web layer communicates with the backend via

local interfaces published by the business components.

D. The main aspects of backend implementation

The OptInv system is based on the JEE platform, the

data importer, repository and service layers use EJB

components, more precisely stateless session beans. The

dependency injection (DI) design pattern is implemented

using EJB and CDI (Context and Dependency Injection)

DI mechanisms.

Figure 2. System architecture

The data model is represented by JPA entities, the

persistence layer is implemented using EclipseLink.

Object-relational mapping is based on JPA meta-

information and it is configured using annotations.

Repository components are organized into a hierarchy

and the basic methods are inherited from a common base

class. The Entity Manager is also injected into the base

class. For validating data on the model level the

Hibernate Validator implementation of the Bean

Validation specification is used (by annotating entities).

Transaction management is used in a declarative way,

the only exception is the data importer module, where

transactions are managed by the components.

For authentication the application server’s login

mechanism is used with a JDBC security realm. Security

related data (users and groups) is stored in the

application’s database.

By using EclipseLink, multitenancy is also supported.

Single table strategy is used, because the same type of

data is required for all the companies, so the database

scheme can be the same for all the tenants. Not all the

entities are tenant aware, only the product related entities.

The required configuration is made by annotating the

corresponding entities. The tenant id is set dynamically,

service methods are intercepted and in the interceptor the

user principal is retrieved from the session context.

E. Data import from Hamor systems

In order to provide statistics and reports with the

OptInv system, data import from accounting software is

necessary. This step is essential, because the data in

accounting databases is in other format.

In the development process of the prototype, the Galfi

Servco LLC provided a database with real data. They use

HamorSoft accounting solutions. HamorSoft uses dbf

files for data storage. In order to import data from this

kind of files a JDBC-ODBC bridge is used.

Some data is used multiple times during the data

importing process. For efficient processing a caching

mechanism is implemented using hashmaps. The key in

the hashmap is the data from the dbf file, and the value is

the object saved in the internal database.

The main product related information is stored in a

single dbf, also containing some data related to providers.

Based on these data a Product object and partial

ProductInfo and Provider objects can be created. The

relation between the product and provider is represented

by an AcquisitionDetails object. Furthermore, in this

object will be saved the delivery price and packaging

type, that are unknown at this part of the import. Other

provider specific information is stored in a separate dbf,

ProductInfo objects can be completed using this file.

The StockInfo object holds stock information related

to the product such as quantity on stock, replenishment

price etc. This object will be created in this step of the

import, but only the Product attribute will be initialized

now. The Product object contains an AcquisitionDetails

and StockInfo data member, which will be initialized in

this step.

A part of the data related to sales is kept in another

dbf. Using this information an Invoice object can be

created and saved into the internal database. By using a

separate dbf Sales objects corresponding to these invoices

can also be created. These objects are also added to the

sales list referenced by Product objects.

The next step is to import the quantity on stock, but

for this more dbf files need to be processed. A dbf stores

the commercial transactions, and a column is indicating

the state and validity of these transactions. Another dbf

stores incoming and outgoing transports. Using these two

files a StockInfo object can be initialized and the Product

objects can be refreshed in the database and memory.

Some company-specific post processing could be also

needed after the import process. These post processing

operations can be configured and executed separately.

For example, in the Galfi Servco database the same

product appeared twice if two providers delivered it. In

order to provide correct and unified statistics and reports,

these products had to be merged. During post processing

some invalid invoices had to be deleted, too.

F. Visualizing data

The system creates statements based on different

calculations. Results are shown in table- or chart-based

views.

On the user interface there is a table view, where the

product information is shown in different columns, like:

product id, product name, average consumption based on

daily average sales in a selected period, replacement cost,

current stock value and quantity on stock. There is a

column indicating the availability of the product based on

the average consumption. These columns can be sorted.

For example, sorting the average consumption column in

descendent order, frequently sold products can be easily

identified. Sorting by the quantity on stock column, the

user can easily identify products, which are unnecessary

kept.

On a different view statistical reports are presented.

For example, monthly sales are visualized using a table

and a chart-based view. The chart-based view is created

using the dCharts Vaadin add-on.

G. User interface

The web user interface is created using the Vaadin

web development framework. It is based on the ServerUI

class implementing the UI interface. The views use the

VaadinTabSheet component. Based on users’ role

different views are shown for users with different rights.

For creating forms BeanFieldGroup components are used,

bounded together with the BeanValidation technology.

Logged in as an administrator, the admin view is

shown, where companies and users can be managed.

Logged in as a user multiple views are shown: products,

sales, configuration and file upload views.

There are views with tables displaying data about a

large number of entities. A paging mechanism is

implemented in the system. A lazy loading method is

used, data queries are created dynamically to achieve a

better performance. All views provide filtering and

sorting possibilities.

V. USING THE OPTINV SYSTEM

After the login, the administrator can manage company

profiles and users belonging to companies.

If a user belongs to a company, after login he can see a

view, which displays a table with information about

products: product id, name, daily average consumption

calculated in a selected period, the minimal price, current

stock value, quantity on stock and the availability, based

on product quantity and average consumption (Figure 3.).

Products can be filtered, ordering support is provided for

each table column and a paging mechanism also can be

used.

Figure 3. Products tab

For example, Figure 4. presents a partial report about

products. For the selected product (id: 200615) the daily

average consumption in the given period (1/1/2013-

9/3/2013) is 0.29 and 69 pieces are available in stock, so

this quantity is enough for approximately 240 days. There

are products with minimal consumption, or absolutely no

sales, and a large amount on stock, which is unnecessary.

Figure 4. Products information

The second tab displays information about sales:

product id and name, sold quantity, price, invoice and

date. Filtering and ordering is also supported.

In a separate tab different reports can be visualized.

Currently two report types are supported: a table showing

the daily average consumption for each month in the last

year, and a graph showing this data for a selected

product. This graph can be useful for isolating products

with recurrent, sporadic and seasonal usage. For example,

the product in Figure 5. can be sporadic, because there

are months without any sales. The system can be easily

extended with new report types.

Figure 5. A sporadic product

Data import and reimport can be done using the Config

tab. The Upload tab can be used to upload files required

for import. According to the company’s database type, it

also indicates which files are required from the

accounting software.

VI. CONCLUSIONS AND FURTHER DEVELOPMENT

In its current state Optinv is a prototype, but it already

provides help for companies in inventory and sales

optimization. During the development the provider of the

test database continuously tested the application and

checked the results. Based on the feedback, the results are

correct, the system can be used, and offers information,

which is not provided in this form by the accounting

software. Some further development possibilities:

 supporting data import from other accounting

software systems;

 automated and scheduled import;

 order management sub-system;

 mobile application, automatic notifications for

major inventory changes;

 additional statistics and reports;

 automatic product categorization and consumption

forecasting;

 optimization of orders (e.g. grouping products).

ACKNOWLEDGMENT

The authors would like to thank Codespring LLC for

supporting the development process and ensuring the

infrastructure. Thanks to Zoltán Pálhegyi, CEO at AVE

Harghita for his professional advices. Thanks for the data

and support provided by the GalfiServco team. In

addition the authors would like to thank HamorSoft LLC

for the possibility of collaboration. Also thanks to Lóránd

Tompa, project manager at Codespring LLC for his help

in the first phase of development.

REFERENCES

[1] Arun Gupta, Java EE 7 Essentials, O'Reilly Media, 2013.

[2] ***, (2014) Java Enterprise Edition reference documentation
[Online]. Available: http://docs.oracle.com/javaee/7/tutorial/doc

[3] Richard Monson-Haefel, Bill Burke, Enterprise JavaBeans 3.0 5th

Edition, O'Reilly Media, 2006.

[4] ***, (2014) EclipseLink Wiki [Online]. Available:

http://wiki.eclipse.org/EclipseLink/Development/Indigo/Multi-Tenancy.

[5] Marko Grönroos, Book of Vaadin: Vaadin 7 Edition, revision 2nd
ed., Vaadin Ltd, 2014.

http://docs.oracle.com/javaee/7/-tutorial/doc
http://wiki.eclipse.org/EclipseLink/Development/-Indigo/Multi-Tenancy

