
Netfood: A Software System for
Food Ordering and Delivery

Cristina-Edina Domokos
Babes-Bolyai University
Cluj-Napoca, Romania

kitty.domokos@yahoo.com

Barna Séra
Babes-Bolyai University
Cluj-Napoca, Romania

serabarna1996@gmail.com

Károly Simon
Babes-Bolyai University
Cluj-Napoca, Romania

simon.karoly@codespring.ro

Lajos Kovács
Codespring

Odorheiu Secuiesc, Romania
kovacs.lajos@codespring.ro

Tas-Béla Szakács
Codespring

Odorheiu Secuiesc, Romania
szakacs.tas@codespring.ro

Abstract—Netfood is an order management software for food
delivery companies. It is a delivery-oriented system that allows
clients to order from multiple restaurants at the same time, and
provides the possibility to order individually or in a group.

Orders can be placed by users through the web interface.
The data related to restaurants, foods and orders is managed
by administrators. A mobile application is used by the delivery
personnel. Both client applications are served with data by a
central server.

The article presents the architecture and the implementation
of the software system. The technologies, tools and methods used
during the development process are also described.

I. INTRODUCTION

The Netfood project aims to develop a delivery-oriented
order management system that allows users to order from
multiple restaurants simultaneously and helps the work of the
delivery personnel in tracking the orders.

There are many applications for food ordering from local
restaurants in particular cities. Some systems support group
orders too, but these are usually restaurant-oriented: an order
can only contain items requested from a single restaurant. This
model works well where the delivery can be solved separately
by the restaurants, but there are settlements (e.g. small towns)
where multiple restaurants are working together with the same
delivery company.

As a concrete example, Odorheiu Secuiesc can be men-
tioned, where most of the local restaurants are in a partnership
with a single delivery company. Currently, if someone wants
to order, the client needs to call the company, which is
not the most convenient solution. A delivery-oriented order
management software could greatly improve the situation.

Netfood provides a web interface for users to place orders,
to view restaurants and menus. The interface also provides the
possibility of creating individual and group orders. Contrary
to other systems, Netfood allows orders, which can contain
items from all of the restaurants associated with the delivery
company, no separate order is required for each restaurant.

The system also has an administration interface where
members of the delivery company can track and manage the
received orders: they can create new restaurants, menus, and
modify existing ones.

The work of the delivery personnel is helped by a mobile
application. This allows them to view the received orders,
accept these orders, and receive all the information they need
for successful delivery.

II. THE NETFOOD PROJECT

A. Functionalities

The server has two main tasks: to serve the client requests
and to communicate with the database. It is connected to a web
and a mobile client application. The communication between
the peers is implemented by a RESTful API. The data is stored
in a relational database.

The users and the administrators can log in to the system
through the web interface, with a Facebook account or using
a registered username.

On the opening page of the web application the daily menus
are displayed for the current date. The date can be changed,
and other food categories can also be accessed from the menu.
The food items can be added to the shopping cart. Users have
the possibility to remove the previously selected foods from
the cart and to modify their quantities. After specifying the
delivery address and the phone number an order can be placed.
The ordering form is filled with default values from the user
profile if available.

Group orders can be also initiated by inviting friends for
the current order. The whole content of the shopping cart will
be visible for each participant. Anyone has the possibility to
invite new users to join the order. State indicators are displayed
and updated when the members finish their orders. When all
the participants finished, the order can be placed.

Additional features are also available for the clients: they
can view the orders that are already submitted, the restaurants
related to the delivery company, they have the option to edit
their profile, and become friends with other users with whom
they can start group orders later.

System administrators can view the orders received on a
selected date. They can manage (add, delete, modify) foods,
restaurants, categories, user roles (the client role can be
changed to delivery or administrator).

The mobile application helps the delivery personnel to
manage the incoming orders. Only users with delivery role
can use the application. After a successful login, the orders
are displayed for the current date. Both individual and group
orders can be accepted partially, by selecting individual items
from the corresponding list. Orders that have been already
accepted can be viewed in a separate list, where the infor-
mation required for the delivery is also displayed, including
the customer’s phone number, which can be called directly

SISY 2018 • IEEE 16th International Symposium on Intelligent Systems and Informatics • September 13-15, 2018, Subotica, Serbia

978-1-5386-6841-2/18/$31.00 ©2018 IEEE 000143

02.08.2018 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

 Model

ServerAndroidClient

 AndroidView Domain

 Repository

 Service

 Controller

Use

WebService

WebController

 ViewModel

WebClient

Use

Manages

Use

Use

Use

Use

Communication
 API

 Activity

Use

Manages

Use

Use

CommunicatesCommunicates

Fig. 1: The architecture of the system.

from the application. The system can be notified after the
completion of an accepted order.

B. Architecture

The system consists of three main components: a Java-based
server, an Angular 4 web and an Android client application
(see Fig. 1).

The server has a multilayer architecture. The Repository
module is responsible for the communication with the database
and for any data manipulation task. The data is represented
by model classes that can be found in the Domain module.
These POJO classes are used by all the server components.
The incoming REST requests are received by resources from
the Controller module, and the responses are created using the
appropriate components from the Service layer. The Service
layer contains the business logic, using the Repository layer
to manipulate the data required to perform the requested
operations.

The Android client application follows the Model-View-
Controller (MVC) principle. The Model layer contains classes
representing the data. The data is displayed on the phone
screen by views from the View Layer, the controllers are
Activity classes. The application uses the Communication API
to send REST requests, and to receive responses from the
server.

The web client communicates with the server through the
WebService layer, and the services are used by the WebCon-
troller layer. This module is also responsible for controlling
the ViewModel, which displays the user interface.

III. THE SERVER

The server is implemented using the Spring Java framework
[1]. It provides an Inversion of Control (IoC) container, which
is used for component management and configuration. It has
support for the Dependency Injection (DI) pattern, used for
managing the dependencies between components.

A. Spring Boot

Spring Boot [2] simplifies the process of creating Spring
applications, speeding up the development by using default

configurations for different application types. It also provides
built-in webservers: Tomcat is used within the Netfood project.

B. Data Model

The model classes (see Fig. 2) are represented by Java
Persistence API (JPA) entities, having private attributes with
public getters and setters, and a public constructor without ar-
guments. The classes are annotated with @Entity and @Table,
each entity corresponds to a table from the database. They are
stored in the edu.codespring.netfood.domain package.

One of the most important entities is the Food class, which
is connected to the Category class with aggregation (n:1
relation). The Choice class is connected with aggregation (n:1
relation) to the Food and Basket classes. Another important
entity is the NetFoodUser which stores the user data (name,
email, password, etc.). The addresses are represented by the
Address class, which is connected to the NetFoodUser class
with aggregation (n:1 relation).

C. Data Access Layer

The data access layer creates a connection with the database
and manipulates the data. A MySQL database is used for data
storage. The Hibernate Object-Relational Mapping (ORM)
framework is used as a JPA implementation by the server,
and an abstraction layer is created over this framework using
the Spring Data JPA module. The entities are annotated with
JPA annotations and the Repository interfaces are derived from
the JpaRepository interface. These interfaces declare methods
for data manipulation, using method names based on specific
conventions. The framework is able to generate the correct
queries based on these method names. More complex queries
can be created by using the @Query annotation followed by
a JPQL command.

The NetFood repository interfaces are stored in the
edu.codespring.netfood.repository package.

D. Service Layer

The service layer is responsible for the business logic of
the project. The requests are routed here by the controllers
and this is the place where the data is processed. The service

C.-E. Domokos et al. • Netfood: A Software System for Food Ordering and Delivery

000144

01.08.2018 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Restaurant
-restaurantId: Integer
-name: String
-tel: String
-address: String
-logoPath: String
-hasDailyMenu: Boole

Food

-foodId: Integer
- name: String
-description: String
-price: Double
-category: String
-imagePath: String

Address
-addressId: Integer
-country: String
-county: String
-city: String
-street: String
-number: String

Basket

-basketId: Integer
-sum: Double
-createDate: Date
-orderDate: Date
-state: String
-description: String
-tel: String

Choices

-choicesId: Integer
-quantity1: Integer
-quantity2: Integer
-note: String
-label: String
-delivered: Boolean

Friends
-friendsId: Integer
-accepted: Boolean

NetfoodUser
-userId: Integer
-username: String
-nickName: String
-password: String
-firstName: String
-lastName: String
-tel: String
-role: String
-createDate: Date
-lastAccess: Date
-visibility: Boolean

Category
-categoryId: Integer
-nameEn: String
-nameHu: String
-nameRo: String

BasketUser
-basketUserId: Intege
-acceptState:Boolean
-readyState: Boolean

Image
-imageId: Integer
-imagePath: String

1 0..*

1

0..*

0..*

1

1

1..*

1

0..*

0..* 1

1

1..*

1

0..*

1

0..*

0..*

1

Fig. 2: Class diagram representing the model classes, their attributes and the relationships between them.

components are communicating with the data access layer for
performing data manipulation.

The service classes are annotated with @Service and they
are stored in the edu.codespring.netfood.service package.

E. RESTful API

REST (Representational State Transfer) is an architecture
model used for client-server communication, typically allow-
ing data exchange based on the HTTP protocol. The data and
the operations are represented as resources, and these resources
can be manipulated by simple operations, based on a HTTP
analogy:

• POST: create resource
• DELETE: delete resource
• GET: get resource state
• PUT: change resource state
Various formats can be used for data transfer, e.g. XML,

JSON, HTML, PDF, etc. The NetFood system uses the JSON
format.

F. Spring Web MVC

The Web MVC framework can be used for creating MVC
(Model-View-Controller) web applications and RESTful web
services.

The framework is built around a DispatcherServlet, this
receives all of the requests and forwards them to the handlers.
The handler classes are annotated with @RestController and
@RequestMapping.

The resources are associated with controller classes. The
@RequestMapping annotation indicates the handler where the
incoming request is forwarded. The requests are received by
the methods from the controller classes, and after a pre-
processing they are forwarded to the service layer.

G. Spring Security

The Spring Security framework is responsible for the appli-
cation’s security, primarily for user authentication and permis-
sion management. The framework is flexible and upgradable,
therefore a token-based authentication and authorization can
be easily implemented. In the Netfood project JWT (JSON
Web Token) tokens are used.

JWT is an open standard that determines the safe transfer
of information between communicating parties using JSON
objects. The token consists of three strings separated by dots.
The first one is the header, this part stores the token type and
the hashing algorithm. The second part contains the payload
and the third part is the signature.

If the user successfully authenticated himself, then a JWT
will be generated, and the server sends it back to the client. The
client stores the token and when a resource is required from
the server, the token will be included into the authorization
header of the request, in the following form: Authorization:
Bearer <token>. The server checks the validity of the token
and if the test passes, then the access will be granted to the
requested resource.

H. Mail service

After a successful registration the system sends a confir-
mation e-mail to the user. The mail service is also used for
password recovery. In both cases the e-mail contains a link
for authentication. This notification system is implemented
using the JavaMailSender interface provided by the Spring
framework.

The link sent through the e-mail contains the JWT and the
URL address to which the user will be redirected. The token
generation is based on the e-mail address and a validity period
is associated to the token.

SISY 2018 • IEEE 16th International Symposium on Intelligent Systems and Informatics • September 13-15, 2018, Subotica, Serbia

000145

I. Liquibase

Liquibase is a database version tracker for managing the
state changes of the database during development. Every
change is logged in the changelog file, which can be in a
XML, YML, JSON or SQL format. The NetFood project uses
the XML format.

The database update operations are partially automated
using Liquibase. The configuration file contains the database
name and the information required for creating a connection.
Liquibase connects to the database, and if the changelog file
is modified then the new operations will be executed. The
changes are grouped in changesets.

IV. THE WEB INTERFACE

The web interface is a single page application (SPA). It is
developed using the Angular 4 [3] front-end framework. The
framework is responsible for managing the web components
and it resolves the dependencies between them. It provides
data binding (one-way data binding and two-way data binding)
support, linking the data model to the view. It also provides
Angular directives, which are used in the HTML pages, so the
view is made up from these dynamic pages.

TypeScript is used as script language, because it supports
the object-oriented programming paradigm and it provides the
ability to use types and classes.

In order to make the web interface responsive, Bootstrap
and ng-bootstrap UI elements are used in the views. Contrary
to the Bootstrap framework, ng-bootstrap does not use jQuery
or other JavaScript libraries. With the combination of these
two frameworks, the web interface has a basic style and a
uniform setting for the rendering units provided by different
browsers. At the same time, it provides an optimal look: the
interface adapts to the current device, the same content will be
displayed differently for two screens with different resolutions.
In this way the Netfood website can be conveniently browsed
on mobile devices too.

Users have the possibility to choose the most appropriate
language on the web page. Currently they can choose between
English, Hungarian and Romanian. For internationalization
and fast switching between languages ngx-translate is used.
This library provides a TranslateService component, which
loads the correct JSON file corresponding to the chosen
language and changes all multilingual labels on the page. In
the JSON files the texts are stored in key: value form, and
the keys are used for specifying the content of the labels.

The web client communicates with the server using the
Angular HttpClient [4] module. There are restricted resources
within the Netfood project, accessible only from specific user
roles. For accessing these restricted resources interceptors
are used, provided by the HttpClient. Each HTTP request is
processed by an interceptor, which adds the token, that was
received after login, to the header of the request, then forwards
the request to the server. In this way the user can be identified
by the server and the access can be granted to the requested
resource.

Similarly to resources, some services can be accessed only
by users with proper permissions. The web interface supports
two types of user roles: client and administrator. The paths
to restricted interfaces are protected by route guards. A route
guard will only allow a user to load a restricted view or to
access a service, if certain conditions are met (e.g. the user
is logged in, the user is in a certain role, etc.), otherwise the
user is redirected to a default page. Such a route guard class
must implement the CanActivate interface and the canActivate
method in which the appropriate conditions are checked, and
if the return value is true, then the user will be able to access
the desired feature. These classes need to be assigned to the
components’ paths in order to allow only users having certain
roles to access them. If there is no assigned route guard to a
path, then it will be available for everybody.

V. THE ANDROID APPLICATION

The Android application is developed for order management
and it is used by the delivery personnel.

Android [5] is a Linux-based operation system which is
mainly used on smartphones and tablets. The current version is
8.1 Oreo. The Android platform has a multi-layered architec-
ture: Linux kernel, Hardware Abstraction Layer (HAL), Native
C/C++ Libraries, Android Runtime, Java API framework and
System Apps. The system app layer contains the applications
(e-mail, SMS service, internet browsing, etc.). New applica-
tions are created using the Java API Framework.

The Android Software Development Kit (Android SDK)
is required for Android application development. The SDK
contains tools used during the development process: debugger,
libraries, documentation, example code, emulator, etc. The
primary programming language is Java, the views are defined
in XML files.

A. Gradle build system
The Gradle [6] build and dependency management system

is used to build the Android application. The build process
is described in the build.gradle script file using a Groovy-
based DSL (Domain Specific Language). Groovy is a dynamic
language, it is used for script writing for the Java platform.

B. Retrofit
The communication between the server and client is based

on REST requests and it is implemented using the Retrofit [7]
framework. Retrofit is a REST client for creating, sending, re-
ceiving and processing requests. It also solves the serialization
and deserialization of the objects.

Three elements are required for working with Retrofit. The
first one is an interface with annotated methods (@GET,
@POST, @PUT, @DELETE) for the REST requests. The sec-
ond one is the Retrofit class which helps the implementation
of the previously mentioned interface. In order to avoid code
duplication the ServiceGenerator class is used. The interface is
implemented with the use of the createService() method. The
third element is a set of POJO classes. These classes represent
the data model which is similar to the model created on server
side.

C.-E. Domokos et al. • Netfood: A Software System for Food Ordering and Delivery

000146

C. User Interface

The UI is created using Activity classes, playing the con-
troller role within the application. Each Activity has an associ-
ated XML view description file. Here are defined the elements
of the view and their layout. Each element has an identifier.
Using this identifier they can be reached and modified by the
Activity class. Multiple fragments can be displayed in a single
Activity. The fragments are usually responsible for a single
feature and their life cycle depends on the Activity. Intents
are used for switching between Activities.

The Netfood Android application has three main activities.
The first one is the login interface. After a successful login
the application switches to the main activity, which contains
multiple fragments, where the orders can be managed by the
delivery personnel. The third activity can be used for password
recovery.

Internationalization

Similarly to the web client, the Android client interface is
also available in multiple languages. The Android platform
has built-in support for internationalization. The texts dis-
played on the views have to be specified as resources in the
res/values/strings.xml file. When a text has to be displayed,
it can be referenced in the layout descriptor XML file by
its identifier. Inside the res library a file has to be created
according to the desired language. In this XML file, the values
of all resources have to be specified, in the desired language,
based on the identifiers. The application takes the resources
from the file which corresponds to the default language of the
device. If the translation is missing, then the application will
search for the default resource value in the values/strings.xml
file.

VI. DEVELOPMENT TOOLS AND METHODOLOGIES

The development process of the Netfood project followed
the Scrum agile software development method. Git was used
for version control, GitLab as a project management tool,
and also for managing the central repository and for assisting
the continuous integration process. All functionalities were
developed on separate branches. Once a functionality had been
completed and approved, the corresponding branch was closed
and merged into the central development branch.

Three environments were used during the development:
STS (Spring Tool Suite) for the server, Android Studio for
the Android application and Visual Studio Code for the Web
interface.

Maven was used as build automation and dependency man-
agement tool for the server, Gradle served this role in the case
of the Android application, and the web client was managed
with the npm (Node Package Manager) system.

VII. USING THE NETFOOD SYSTEM

A. The Web Interface

On the main page of the web interface the available foods
are displayed. Users have the option to log in with a registered
user or via Facebook by accessing the Login menu. They can

Fig. 3: Shopping cart for a group order

also request password recovery, or they can navigate to the
registration page.

Logged in users can view or edit their profile under the
My Profile menu. They can view their submitted orders and
manage their friends. The user database can be searched by
names or usernames. Friend requests can be sent to users, and
the received requests can be accepted. Orders can be placed
by adding the desired foods to the shopping cart, and group
orders can be initiated too.

After initiating a group order (see Fig. 3), the friend list
appears in a sidebar and the users can be invited to the group.
The invited persons will receive a notification. The invitations
can be accepted or rejected. Each participant has the possibility
to exit the group or to invite additional users. Status indicators
are displayed, and when everyone is ready, the order can be
placed.

For the administrators the received orders will be displayed
on the main page. They can add new restaurants, modify
existing ones or delete them under the Restaurants menu.
Under the Menu option they can manage daily menus and
other food categories. The user roles can be modified under
the Users menu.

B. The Android Client Application

The Android application (see Fig. 4) can be used by the
users with delivery role. When the application is launched,
the "Login" and Password Recovery functions are available.

After a successful login, the accepted orders are displayed
under the My Deliveries menu. If an order has been delivered,
its state can be set to completed. For each order the shipping
address will be displayed, and the customer’s phone number
can be called directly from the application. Orders that are not
yet accepted can be viewed under the New Deliveries menu.
These can be opened and accepted or partially accepted by the
user.

VIII. CONCLUSIONS AND FURTHER DEVELOPMENT

Within the Netfood project a software system has been
developed for helping restaurants and food delivery compa-
nies. Users can create individual or group orders through the
web interface. The menus, restaurants, users, and orders can
be managed by the administrators. The delivery process is

SISY 2018 • IEEE 16th International Symposium on Intelligent Systems and Informatics • September 13-15, 2018, Subotica, Serbia

000147

(a) Login page (b) New Deliveries page.

Fig. 4: Android application

supported by the Android application: the couriers are ime-
diately informed about new orders, they can accept deliveries
receiving all the required information.

During the development process new functionalities
emerged as further development possibilities:

• an interface for restaurant owners for directly managing
their offers;

• the possibility for assembling daily menus from already
uploaded foods;

• after placing an order the customer should receive a
message with the estimated time of delivery;

• iOS version for the mobile application;
• Google Maps integration into the mobile application, to

navigate the delivery personnel from the current location
to the delivery address;

• a stand-alone mobile application used by customers for
placing orders.

REFERENCES

[1] R. Johnson, The Spring Framework - Reference Docu-
mentation, [Online], Available: http://docs.spring.io/spring-
framework/docs/2.0.x/reference/index.html.

[2] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M.
Overdijk, C. Dupuis, S. Deleuze, M. Simons, V. Pavi’c, J. Bryant, M.
Bhave, Spring Boot Reference Guide, 2012-2018.

[3] Oswald Campesato, ANGULAR 4 Pocket Primer, 2017.
[4] HttpClient, [Online], Available: https://angular.io/guide/http
[5] Android [Online], Available: https://developer.android.com
[6] Gradle official website, [Online], Available: https://gradle.org
[7] Retrofit - Square, [Online], Available: http://square.github.io/retrofit/

C.-E. Domokos et al. • Netfood: A Software System for Food Ordering and Delivery

000148

