Magic Dashboard: Software System for Real-Time
Development Tool Tracking

Daragus Botond*, Fodor Lérant*, Kelemen-Fehér Dénes Balint!, Matis Szilard-Gabor' and Sulyok Csaba*,
* Babes-Bolyai University
Faculty of Mathematics and Computer Science
Romania, Cluj-Napoca 400084
t Codespring - Software development and outsourcing company

Romania, Cluj Napoca, 400664

Email: office@codespring.ro
* Email: daragusbotond@gmail.com, fodor.lori @hotmail.com, kelemen.balint@codespring.ro,
matis.szilard @codespring.ro and csaba.sulyok @ gmail.com

Abstract—Nowadays, software developers are more and more
involved in multiple projects simultaneously and their focus
should be shared between each of them. The primary purpose of
the Magic Dashboard project is to facilitate the working progress
of these developers and project managers by keeping them up
to date with the changes in their projects. The system displays
data from different project management systems on screens that
can be built into a wall or even behind a mirror.

This paper presents the main functionalities and architec-
tural structure of the Magic Dashboard project, detailing the
technologies and tools used. In the second part of the paper, a
comprehensive insight is given into how the application may be
used in operation, and finally it mentions some of the future
development possibilities.

I. INTRODUCTION

Nowadays, people have less and less time to spare as they
try to keep pace with accelerated development. As a result,
they try to find tools that can speed up and make everyday
work easier. One of the best solutions to this problem is to
create real-time feedback systems.

Such complex systems are developed and maintained by
companies to track current states and conditions and display
those on different types of dashboards. For example, a system
called Valarm[1] can be used to prevent large fires, observe
weather conditions, track down industrial machinery, etc.
Another system that was created to facilitate everyday life
is called MagicMirror[2]; it was one of the key pillars of the
idea of the Magic Dashboard project. Because the need for
productive timing in software development, the application has
been invented and developed for this industry.

The primary goal of the Magic Dashboard project is to
provide an application that can be used to save time for the
workers in the field of software development. The developers
of the project try to design an interface that is user-friendly,
transparent and logical in both design and implementation.

The primary target audience of the Magic Dashboard soft-
ware system are software developers and project managers.
The software provides continuous monitoring and follow-up
of activities on specific projects. This is accomplished by
collecting the most important data that the user wants to

display on a common interface. It is preferable to use a
larger device for displaying the dashboard, whether it is a
conventional or smart TV screen, projector or even a smart
mirror built into a wall, depending on the amount of data the
user wants to see. The shown data on the display is updated
in real-time rather than being static and it is collected from
various project management systems, such as GitLab or Jira.
During the design phase of the software, it was important that
the system be able to cooperate with the internal services of the
company, therefore the system administrators have a number
of configuration options. Also, the users can display different
data on their dashboards according to their own privileges.

II. THE MAGIC DASHBOARD PROJECT

A. Functionalities of the web application

The interaction between the users and the system is realized
through a web interface, which can be accessed by both guests
and authenticated users (see Figure 1). If the user decides
not to log into the system, he/she can only access the view
of the public dashboard, where the developer team’s jointly
assembled dashboard is displayed.

In case the user chooses to log in, it can be done by a
GitLab validated login[3], whereupon the user can edit its own
private, or even the public dashboard. By choosing the edit
option, the private dashboard of the user will be displayed by
default, initially providing a helper component that includes a
small guide and the identifier of the dashboard as a QR code.
In order for the users to be able to start fetching data from
GitLab and to show them on the dashboard, they have to first
set the access token provided by the GitLab service.

The dashboard is built up using many different components.
Each displays one specific information for the developers.
After placing components on the dashboard, the user can make
settings for that specific one. For example, in the case of the
‘Latest Contributors’ component, the settings panel allows the
following configurations: selecting the projects whose latest
contributors’ profiles the user wants to see; and also choosing
the number of activities to be shown. This functionality can be

Visualize a
Public

‘ Dashboard

Guest Set user

services

List
of supported
components

Vizualize Private
Dashboard

Show QR
code
Switch to Private

Dashboard
Drag & resize

User elements

Change
the layout of the
Public/Private
Dashboard

Delete
dashboard
components,

Add New Component Set component

configuration

Fig. 1: Use case diagram of the web interface for clients and
certified users.

performed on the editorial view of both the private and public
dashboards.

The users also have the option to switch from the currently
visible public dashboard to their own, private dashboard. This
can be realized by either pressing the navigational icon on
the web client, using the mobile application or by executing
the appropriate Slack command [4]. At this point, the public
dashboard is set for the user’s private dashboard for a short
period of time.

The public dashboard’s view is designed for displaying on a
mirror or a screen without any peripherals, therefore the user-
defined components are still visible, but any interaction with
them is disabled.

B. Functionalities of the mobile application

The Magic Dashboard system provides an option to switch
between dashboards displayed on the web interface, which can
be done by a mobile application running on Android or i0OS
devices. Since the results of the mobile application’s function-
alities are visible publicly on the web interface, the mobile and
web clients are closely related. Using this application, a user
can only make a private dashboard public if it is the legitimate
property of the user.

The switching between dashboards can be performed by
the users in two ways: they can either type the name of their
dashboard into the application or read the QR code shown on
the web interface using the integrated QR code reader. The
users have the option to switch the public dashboard back as
well, if the publicly shown dashboard is their private one. The
names of the dashboards entered into the application get saved

Component Topology
Local Network

——

Firewall .
M S
(Optional) agic server Database
) Es/ yﬁ
@

Client 1

Mobile Client Client 2

Fig. 2: Component topology of the Magic Dashboard project

into a list, so the users do not have to reenter those every time
they want to perform a switch.

C. Architecture

The architecture of the Magic Dashboard system consists
of four main components: a web server, a web client, a
mobile client application and an MQTT [5] (Message Queuing
Telemetry Transport) Broker. The topology of those compo-
nents can be seen in Figure 2.

The framework of the architecture is greatly influenced
by the environment that the system is deployed on, since
the server and the web clients typically run on local (e.g.
corporate) networks. These local networks are usually pro-
tected from requests from devices outside of the network by a
firewall, so communication between the server and the users’
smart phones could not be realized. This problem is solved by
introducing a message-forwarding technology into the system:
the MQTT Broker. The broker allows clients outside of the
network to send their requests to this component first, and
then forward it to a local network client, so the request is
received by the server from a trusted device. Realization of
such a communication does not require extra firewall rules,
while neither the system nor the security of the network is
compromised.

The components that build up the Magic Dashboard’s sys-
tem can be divided into additional subcomponents. Those and
the connections between them can be seen in Figure 3.

The server is responsible for handling the data and serving
the clients’ requests, while also communicating with external
systems. Structures in the Model package contain the rep-
resentation of the central entities of the application. These
structures are used directly by the data access (Store), Service
and Controller layers. All the data of the application is stored
in a document-oriented database.

The data access layer communicates with the database man-
agement system, inserting data into the database and retrieving
from it. The service layer includes the implementation of the

Server
Backend
API
}% Model 4—.:
Controller = ;
r'.x T : E
:) Service
% Router ol B :
: Store -
; ;
Web Client |
L Database
API |
Gateway
+ MQTT Broker
Ul ' Mobile Client
% Layout | MQTT Gateway
5)
W :
Ul
Components Ul Components

Fig. 3: Component diagram of the Magic Dashboard software
system

operations that build up the logic of the application, which
can be accessed through interfaces by the controller layer.
The REST (Representational State Transfer) requests from the
clients are received and forwarded to different controllers by
the API Layer (Router). The controllers in cooperation with
the service layers process the requests and return the required
data to the users.

The web client application is responsible for displaying the
graphical user interface. Similarly to the server, the structures
of the entity representation for displaying the data can be found
here. The communication with the server is provided by the
API Gateway layer, whose methods are directly used by most
of the components of the user interface.

The task of the mobile client includes displaying the user
interface needed for publishing private dashboards remotely
and to communicate with the MQTT Broker (and thus a web
client on a local network). Methods for sending and receiving
requests are implemented in the MQTT Gateway layer.

III. TECHNOLOGIES

The server side of the Magic Dashboard system is imple-
mented in Golang and RehinkDB is used as database, the
client side is based on the React]S and JavaScript technologies
and the mobile application of the system was developed using
React Native and Expo.

A. Golang

Golang[6], also known as Go, is an open source pro-
gramming language developed by Google. When creating
the language, the developers tried to eliminate problems and
difficulties of other languages as much as possible, therefore
Golang does not have exception handling, classes, dynamic
types, but it provides, for example, lightweight thread man-
agement (goroutines) and memory management. Lightweight
threads provide the ability to run competing and parallel tasks
at the same time, and, contrary to C++, memory management
also provides garbage collection. Its syntax is similar to the C
language, it is compiled, so a performance-oriented code can
be written with the help of Golang.

B. RethinkDB and GoRethink

RethinkDB [7] is a JSON document-based, open source,
distributed NoSQL database that is optimized for scalable and
real-time applications and provides real-time tracking of query
changes. It uses the proprietary ReQL query language, which
offers favorable chained queries. In the Golang programming
language, the database operations with RethinkDB can be
realized using the GoRethink [8] library.

C. Viper

For the Magic Dashboard to work, it is necessary to specify
multiple configuration values, since the system is in contact
with external services. This problem is solved by using the
Viper[9] library developed in Golang. Various settings allow
the application to load configuration information from envi-
ronment variables, files (JSON, TOML, YAML, HCL and
Java property files) or command-line arguments. Software
developers can set default values or can define load priorities.

D. Gin

Gin is a HTTP web framework implemented in Golang, that,
based on Go performance measurements[10], is currently one
of the most effective and fastest-serving frameworks among
its competitors. The significant difference in speed is due to
HttpRouter, which uses the Radix tree [11] data structure.

E. React]S

ReactJS[12] or React is a JavaScript library that allows the
developers to create single page application (SPA) interfaces.
Its syntax can be either JSX[13] or simple JavaScript. The
framework is based on components that can be any complex
user interface elements. These components can be nested,
communicating with each other as property-called data. Due
to the nested features of the components, the user interfaces
as components conform to the unit closure principle that a
particular component is responsible for itself. Well-defined
components can be used multiple times.

Another strength of React compared to other libraries is
using the virtual DOM. This mechanism allows to refresh only
those components which status has changed during use instead
of refreshing the whole web page.

F. Golden Layout

Golden Layout[14] is a library written in JavaScript that
can be used to modify the layout of a web application. The
library allows the user to divide the surface of the web page
into several smaller windows, or to add multiple tabs to the
windows. These windows can be added from a side menu by
drag-and-drop and are highly customizable.

For the Magic Dashboard, this multi-window splitting gives
the users the ability to display different data of the components
on different windows and to position them as they wish on the
dashboard.

G. TypeScript

TypeScript[15] is an open source programming language
that is a syntactical extension of JavaScript, developed by
Microsoft. One of the most important features of TypeScript
is that it provides classes, interfaces, primitive, generic and
other types. JavaScript has no types and is an interpreted
language, therefore many programming or syntax errors can
not be filtered without running. TypeScript provides a static
code analysis feature that displays errors during development.

H. React Native

The mobile client of the Magic Dashboard system is devel-
oped in React Native[16], a concept that is based on ReactJS.
Upon compilation of a React Native application, native code
is generated for different mobile platforms and in some cases,
developers need to make platform-specific settings or write
platform-specific code. A major advantage of React Native to
React]S is that new component types can be used exclusively
for mobile applications. The Magic Dashboard project seeks
to reach mobile applications on as many platforms as possible.

1. Expo

Expo[17] is a toolkit built around React Native so that
software developers can simultaneously build Android and
i0S applications. It has the advantage of integrating the native
code with the root directories so that software developers do
not need to develop separate Java/Objective-C native modules.
Expo provides an opportunity for developers to make the

This is the editable view of the dashboard. You can modify the layout, add new
components or change the configuration for the components that were added by

you. Set your token before you try to retrieve any data (go to "Services").

Fig. 4: The editorial view of the dashboard after signing in to
the system

application under development available regardless of the
environment, thus facilitating the tracking of their status and
performing testing on multiple devices.

J. Git and GitLab CI

During the development of the project the Git[18] was used
as a distributed version control system. The new functionalities
were always implemented on a new branch, following the rules
of ‘Git-flow’[19].

GitLab CI[20] has been used for continuous integration,
where every new modification on the code (push) was built
for both server and client applications. GitLab CI allows
for automatic containerization as well. The Magic Dashboard
project creates a Docker image on both client and server pages
for each tagged state, and it will be uploaded to a central
Docker registry. As a last step, the system is deactivated
automatically to a test server.

IV. USING THE MAGIC DASHBOARD
A. The web client

By entering to the web application for the first time, the user
is presented with two options: he/she can display the public
dashboard or sign in to the application by clicking the "Login"
button. If the latter option is chosen, the browser redirects
to the GitLab web page where the user must agree that the
application may use the Gitlab API with his/her rights. If this
is done, the user will be successfully logged in to the Magic
Dashboard system and the browser will return to the above-
mentioned interface. Here, instead of the "Login" button, the
"Edit Dashboard" button will be displayed. Choosing this
option allows the user to enter the editorial interface of the
dashboards, where a single component called ‘Help Text’ can
be found, that contains a short guide and the QR code of the
dashboard (see Figure 4).

On the left side of the interface the menu panel is located.
The top side of the menu contains all the possible components
that can be placed to the dashboard, while the bottom part
of the menu includes the ‘Services’, ‘QR Code’, ‘Preview’
and ‘Logout’ buttons, respectively. By clicking the ‘Services’
button, the user may set the access token of his/her GitLab

24

Bl
FaRL
R

Fig. 5: Example view of a fully configured dashboard

account. Without doing so, the system will not be able to
request data, so if this token is not set, a red exclamation
mark will show up on the mentioned menu button. By selecting
the ‘QR Code’ option, the current dashboard’s QR code will
be displayed. The ‘Preview’ button will show the current
dashboard’s view where no interaction is possible with the
dashboard, or by clicking the ‘Log Out’ button the user can
log out of the application. On the right bottom side of the
interface, a switcher icon is visible that can be used to change
between the editing view of the user’s private and the public
dashboard.

Placing the components in the menu on the dashboard is
done by the drag-and-drop method. The interface gives oppor-
tunity to scale and move components on the dashboard freely,
and the users also have the option to close the components at
any time. By clicking on the gear icon in the top right corner
of a component, a pop-up window displays the settings for that
component. After configuring the components, the dashboard
looks similar to the one shown in Figure 5.

B. The mobile client

Using the Magic Dashboard system’s mobile application the
user can make his private dashboard public remotely, without
interacting with the web interface. To do this, the application
has to know the private dashboard’s identifier. This can be set
on the welcome screen of the application: the user can choose
to scan the QR Code shown on the web interface of his/her
private dashboard by clicking the ‘QR Code’ button or to enter
the name of it by pressing the ‘Name’ button. After the user
gives the desired ID, it is possible to publish the dashboard
for a few minutes by pressing the red button in the middle
of the display. The user has the possibility to switch back to
the public dashboard without waiting for the automatic change
to happen by pressing the same publishing button again. The
aforementioned views of the mobile application can be seen
in Figure 6.

The application allows the user to store multiple dashboard
IDs. These identifiers can be scanned in the publishing view,
where the QR code can be scanned or the name of the
dashboard can be typed. The desired dashboard to publish can
be chosen from a drop-down list.

& Home

€ Home

Magic Dashboard

Change Dashboard Change Dashboard

@ =

Current Dashboard: Default Public

You can change the Dashboard View

—

Current Dashboard: Casive

< (o} a

Fig. 6: The user interface of the mobile application. The first
picture shows the Home Page, where the user can choose how
he/she wants to change the dashboard view, by scanning a
QR Code or by typing the name of the dashboard. In the
second picture an input field and a button is shown, where the
expected text is a name of a private dashboard and by tapping
the red icon the user can change the dashboard view. In the
last image the green button indicates that the dashboard has
changed successfully.

CONCLUSIONS AND FUTURE WORK

Within the framework of this project, the Magic Dash-
board managed to become an application that can be used
by software developers and project managers for tracking
the current state of their projects in real-time, on a single
dashboard. Beside the web client, a mobile application has
also been developed, which helps the users to remotely make
their private dashboard public.

During the development, many ideas have arisen that could
expand the functionalities of the application, such as inte-
grating other project management systems and development
tools (Jira, GitHub, etc.) or supporting more than one private
dashboard per user. Creating new components to display
different data from supported project management systems and
upgrading existing ones (e.g., a component that shows the lat-
est contributions for a GitLab project should also show the type
of the contribution) is also a potential development option.
Currently the web client uses a long polling mechanism to
retrieve data from the server, but it would be an improvement
if it used an event-oriented solution instead.

For controlling the behavior of the dashboard, IoT (Internet
of Things) devices could be integrated into the application,
such as LED strip lights (that flashes, if something changes on
a component) or physical ‘doButton’ (that will make the user’s
private dashboard as public for a short amount of time by
pushing it). Such controlling can be realized by implementing
it through virtual personal assistants (e.g., Amazon Alexa,
Google Home, Microsoft Cortana, Samsung Bixby).

(16]
(17]

[18]

[19]

[20]

REFERENCES

“Valarm monitor anything, anywhere.” [Online]. Available:
http://www.valarm.net

“The open source modular smart mirror platform.” [Online]. Available:
https://magicmirror.builders/

“Gitlab as an oauth2 provider.” [Online]. Available:
https://docs.gitlab.com/ce/api/oauth2.html

“Slash commands.” [Online]. Available: https://api.slack.com/slash-
commands

A. Banks and R. Gupta, “Mqtt version 3.1. 1,” OASIS standard, vol. 29,
2014.

A. A. Donovan and B. W. Kernighan, The Go programming language.
Addison-Wesley Professional, 2015.

G. Tiepolo, Getting started with rethinkdb. Packt Publishing Ltd, 2016.
“Gorethink.” [Online]. Available:
https://godoc.org/github.com/GoRethink/gorethink

“Managing configuration with viper.” [Online]. Available: https://scene-
si.org/2017/04/20/managing-configuration-with-viper/

“Gin - package httprouter.” [Online]. Available: https://github.com/gin-
gonic/gin/blob/mastet/BENCHMARKS.md

R. L. Angle, E. S. Harriman Jr, and G. B. Ladwig, “Radix tree search
logic,” Feb. 16 1999, uS Patent 5,873,078.

A. Fedosejev, React. js Essentials. Packt Publishing Ltd, 2015.

“Jsx documentation.” [Online]. Available: https://jsx.github.io/doc.html/
“Golden layout documentation.” [Online]. Available: http://golden-
layout.com/docs/

G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,”
in European Conference on Object-Oriented Programming. Springer,
2014, pp. 257-281.

B. Eisenman, Learning React Native: Building Native Mobile Apps with
JavaScript. " O’Reilly Media, Inc.", 2015.

“Introduction to expo.” [Online]. Available:
https://docs.expo.io/versions/latest/

J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. " O’Reilly
Media, Inc.", 2012.

D. Kummer, “Git-flow cheatsheet.” [Online]. Available:
https://danielkummer.github.io/git-flow-cheatsheet

“Gitlab continuous integration and deployment.” [Online]. Available:
https://about.gitlab.com/features/gitlab-ci-cd/

