
Legendárium Navigator:
Software System for Supporting Transylvanian Tourism

Attila Barna Máté*, Roland Nagy*, Zsolt Szécsi**, Dénes-Bálint Kelemen-Fehér**, Károly Simon***
* Babeș Bolyai University, Cluj-Napoca, Romania

** Codespring LLC, Cluj-Napoca, Romania
*** Codespring LLC, Babeș Bolyai University, Cluj-Napoca, Romania

mateattilabarna@gmail.com

rolinagy94@gmail.com

szecsi.zsolt@codespring.ro

kelemen.balint@codespring.ro

simon.karoly@codespring.ro

Abstract— The purpose of the presented software is to help

tourists to find their way to legendary locations in

Transylvania.

The project is composed by a central server, an Android
client application and a web client application. The use rs of

the Android application have the possibility to read about

the legends, listen to audio books and watch videos. The

application provides navigation to legend locations, and a
notification system is also integrated for indicating these

locations. The required data is uploaded to the server via

the web client application.

I. INTRODUCTION

Transylvania is frequently mentioned as being “The
Land of Legends”, with a lot of tales and legendary
places. The “Székelyföldi Legendárium” is a project
initiated in Szeklerland, aiming to collect local legends
and fairy tales (156 so far). Within the framework of the
project, a book was published, together with a collection
of coloring books, puzzles and other toys for children.
Recently, a pilot episode for a 3D animation movie has

also been released.

A new initiative is the development of a mobile
application for helping tourists to find the geographic
location of these legends. The application also provides
media content related to these tales and information about
upcoming events in the area.

With the help of this mobile application, tourists can
read about the legends, browse through pictures and listen
to audio books. A map view provides help in finding
legendary locations, and navigation support is also
integrated. The tourist receives a notification if there is a
legendary location nearby. A news feed is also integrated,

providing information about ongoing events near these
locations. Furthermore, there is a possibility for
downloading media content related to legends and in this
way the application can be used in offline mode, too. This
is a crucial functionality due to the possible lack of mobile
signal in some locations.

To provide these functionalities , the required data is
uploaded to a central server and it can be managed by
Legendárium employees using a web-based user interface.

II. THE LEGENDÁRIUM NAVIGATOR PROJECT

A. Requirements

The server is responsible for the business logic and

provides a RESTful API for accessing services. Its main
parts and functionalities:

 data access layer;

 data importer module (for importing data exported
from another server);

 business logic layer;

 user authentication and authorization;

 RESTful API.

The web client provides the following functionalities:

 authenticating Legendárium employees;

 creating, updating and removing legends;

 uploading and managing legend-related media
content;

 uploading and managing data for the news feed
module;

 importing legends and resolving data conflicts
during the import process .

Users having administrator privileges have additional
functionalities:

 registering Legendárium employees;

 testing API requests with Swagger;

 visualizing system-related statistics;

 executing health checks on different modules (e-
mail, database).

The functionalities provided by the Android client

application:

 user registration and authentication;

 viewing/listening and downloading media content

related to legends;

 removing locally stored legends;

 displaying legendary locations on a map;

 providing navigation support for the users;

 displaying notifications when a legendary location
is nearby;

 trip planning (with legendary locations on the
route);

 news feed.

B. Architecture

The system has three main components: a server, an
Android client application, and a web client application.
The server can be divided into two parts : the backend and
the RESTful API. There is also a common module
containing Data Transfer Objects (DTOs) used for
communication between the subsystems.

Figure 1. System Architecture

The main entities of the system are included into the
Model package. A MySQL relational database is used to
preserve these entities.

 The Service and the Repository packages are also

included in the backend module. The business logic is
implemented within the service layer. The required data is
acquired from the repository layer. The results are
published through the RESTful API.

The API component is responsible for the
communication between the subsystems. The API

guarantees that the client gets a correct response for each
request. DTOs are used for data transfer while JSON is
used as a communication format. Each component has
specific assemblers for transforming the DTOs into their
own models and vice versa.

The Android client uses a SQLite database to locally
store data required for the caching mechanism. Both client
applications are developed based on the MVC design
pattern [1].

III. TECHNOLOGIES

In the first development phase, skeleton projects were
generated for the server and web modules, using the
JHipster Yeoman generator. On server side Spring
frameworks are used, the web client is based on
JavaScript technologies.

A. The Spring Framework

The business logic of the application is implemented
using Spring Beans. These components are managed
within the Inversion of Control (IoC) container provided
by the Spring [2][3] framework, and the Dependency
Injection pattern is also realized using this technology.

Besides the Spring Core framework other server side
Spring technologies are also used: Spring Boot, Spring
Security, Spring Data JPA and Spring MVC REST.

The project is configured using Spring Boot and an
embedded web server is used as runtime environment for
the web components.

The authentication mechanism is implemented using
the Spring Security framework, based on the OAuth2
standard specification. After a successful login operation,
the client receives an access token and a refresh token
from the server. The access token is used to authenticate
the user, being transferred with each http request. Since
the token has a limited life span, the refresh token is used

to obtain a new access token after the old one has expired.

The Spring Data JPA framework serves as an
abstraction layer over the Java Persistence API (JPA), and
the Hibernate Object-Relational Mapping (ORM)
framework is used as JPA implementation. Based on this
approach, only the repository interfaces are created using

the proper naming conventions, the implementations are
generated in the background by the Spring Data
framework. Moreover, complex queries can be also
created within the interfaces using special annotations
with JPQL queries.

The communication with the server is based on the

REST architecture, which is realized using RESTful web
services. The Spring MVC REST framework simplifies
the creation of these RESTful web services. The REST
resources are Spring components with special annotations.
These annotations indicate the type of requests that will be
accepted, the type of responses that will be generated. In
addition, the endpoint mapping is also specified by these
metadata.

The data between the server and the client is sent over
the network in JSON format. The Jackson framework is
used as JAX-B implementation for serialization and
deserialization.

B. Liquibase

During the development process sometimes the domain
model needs to be updated and the database schema is
affected by these updates. To manage these changes , the
Liquibase framework is used. The change sets are stored
in XML format. A special DataBaseChangeLog table is
created and at each run it is checked if any changes have
been made to a table. If a new change set is present, then

the database schema will be modified accordingly.

C. JUnit and Mockito

To ensure the software’s quality unit tests were created
using the JUnit framework. To perform unit tests, the

components have to be separated from each other. If a unit
has dependencies, the isolation can be made by us ing
mocking frameworks. Mockito is a Java-based framework
having support for mock objects. The original objects can
be replaced by these mocks and, in this way, the tests are
not affected by the external dependencies .

D. AngularJS

The web client uses AngularJS [4] as MVC framework.
This is an open-source MVW (Model-View-Whatever)
framework written in JavaScript. Extra attributes are
added into the HTML tags which are interpreted by the
framework as directives when the HTML page is loaded.

These directives can be used to bind business models to
HTML pages. The models are stored in standard
JavaScript variables.

There are four main views within the web application:
footer, navbar, sidebar and the content. These views have
controllers attached to them. The REST resources are

accessed by these controllers using specific factories.

E. Bootstrap

The user interface of the web application is created
using the Bootstrap open-source HTML, CSS and

JavaScript framework. The technology provides support
for responsive web design, the pages are loaded
dynamically corresponding to the resolution of the user’s
device.

F. Retrofit

Retrofit is a REST client framework for Android [5]
applications. It uses annotations for sending HTTP
requests to the server, and also for data serialization and
deserialization (Gson annotations). In the case of the
presented mobile application, the data is received in JSON
format and it is deserialized in DTOs. These DTOs are
converted into model objects using Assemblers.

G. Butterknife

The Butterknife framework is used to bind variables
and methods to views. By using annotations, it provides
support for dependency injection, generating code which
can be reused in many places. For example, omitting the

findViewById method calls, using the @Bind annotation.
The listener inner classes can also be omitted, using the
@OnClick annotation on the method instead.

H. OrmLite

OrmLite is a lightweight framework for storing Java

objects to SQL databases using annotations. The Andro id
application can be used in offline mode. The caching
mechanism required to provide this functionality is
implemented using this ORM framework.

I. IcePick

For exchanging data between Android Activities
bundles can be used. IcePick is a library that resolves code
snippets, which appear multiple times when saving a
bundle or restoring one. By using IcePick annotations,
these redundant code fragments can be eliminated.

The Legendárium Navigator mobile application uses
this mechanism to support landscape and portrait mode. It
saves the class attributes when the application layout
switches between portrait and landscape mode, and
reloads these attributes when the rotation is complete.

J. Picasso

Picasso is an open-source library for downloading and
caching images. Some of the main functionalities
provided by Picasso and used within the Legendárium
Navigator mobile application:

 downloading images;

 resizing images;

 using placeholders while the download process is
in progress;

 managing different data sources: files, assets,
content providers, resources ;

 asynchronous download.

K. Google Maps

Both client applications use the Google Maps API for
viewing legends on a map, based on their geographic
location.

One of its main advantages is that it can be customized,

besides its basic functionalities (scroll, zoom, etc.) – it is
possible to draw on top of the map layer (markers, extra
information displayed together with the markers or any
other objects).

IV. DEVELOPMENT TOOLS AND METHODS

During the development process Scrum methodologies
were used, providing an agile software development
approach.

Mercurial was used as distributed version control
system, SourceTree provided a graphical user interface fo r

source control management and the central repository was
managed using RhodeCode.

In the first stage of the development a skeleton project
was generated for the server module using JHipster [6].

As build and dependency management system Gradle
[7] was used, so the configuration of the project is
Groovy-based. In the case of the web module, the build
procedure was also supported by Yeoman and Grunt.

For always keeping the code in a correct state the

Continuous Integration (CI) development methodology
was used, supported by Jenkins. Jenkins was also linked
with the SonarQube static code analyzer platform. In
addition, it published the stable builds to the test servers
and to the mobile beta testing platforms automatically.

Android Studio and IntelliJ IDEA were used as IDEs,
together with further development tools (e.g. for database
schema management, UML modelling, creating UI
mockups, etc.).

V. USING THE LEGENDÁRIUM NAVIGATOR

A. Using the Android client application

After starting the application, a login screen appears.
Remember me and Login automatically options can also
be selected on this screen, and there is registration
possibility for new users. If the registration was
successful, the server sends a confirmation e-mail to the

user, containing a confirmation link.

After login, the side menu appears and the main views
can be accessed: News Feed, Legends, Map, Settings,
Logout, About. A background service is also launched,
which alerts the user near legendary locations.

The News Feed view displays news organized in a list,
with their title, a few rows of their description, and an
attached image. A view with a more detailed description is
available for each item.

Legends are also displayed in a list, each legend on a
different card, with its name, region, a cover image, and a
book id. The book id associates the legend with its printed
version published in the Legendárium book.

Figure 2. Login screen and side menu

A search feature is also implemented; a dropdown text
box appears in search mode. The user has the possibility
of searching for legends by their name or region.

On the detailed view of a legend four tabs are
displayed: Description, Map, Photos and Media. On the
Description tab, the full description and a large cover

photo can be seen. On the Map tab, the legend’s location
is marked on a map and driving directions can be
requested to this location. The users can listen to audio
books associated with the legend using the Media tab. The
Photos tab contains pictures related to the selected legend.

By selecting the Maps view from the side menu, a map

appears where legend locations are marked. By clicking
on a marker, a pop up view appears with the description of
the selected legend, and three buttons. These buttons can
be used for downloading the legend, and for refreshing or
removing the locally stored data. From this view, the user
can also be redirected to the detailed view of the legend.

The users can change their personal data and some
configuration parameters using the Settings view.

Figure 3. News feed and legend list

Figure 4. Description and Map

B. Using the web application

After a successful login, the members of the
Legendárium team have the possibility of creating, editing
and removing legends and related media contents .

There is also a possibility for importing multiple
legends at once from a JSON file. There is a special view
for resolving data conflicts, which appear during this
import process (see at: Figure 6).

The system administrator has some extra
functionalities: user management, views with server
related information (statistics, configuration, logging, API
documentation), possibility of sending API requests via
SwaggerUI.

Figure 5. List of legends

Figure 6. Legend conflict handling

VI. CONCLUSIONS AND FURTHER DEVELOPMENT

In its current state the Legendárium Navigator system

is an operational prototype. After some minor

development tasks and a beta testing phase, it can be

published and improved based on user feedbacks.

Some further development possibilities :

 Connecting the application with social networks
(e.g. sharing events, locations)

 Route planning for trips (the functionality is under
development)

 Gamification: after visiting a legendary location

the user can be rewarded
 Displaying hotels, restaurants and other POIs near

the legendary locations

REFERENCES

[1] Martin Fowler, Patterns of Enterprise Application Architecture, 1
st

ed., Addison-Wesley Professional, 2012.

[2] Rod Johnson, Juergen Hoeller and co., (2004-2012), Spring
Framework Reference Documentation, [Online], Available:
http://spring.io/docs

[3] Chris Schaefer, Clarence Ho, Rob Harrop, Pro Spring, 4th edition,
Apress, 2014.

[4] Official AngularJS documentation, [Online], Available:
https://docs.angularjs.org/api

[5] Zigurd Mednieks, Laird Dornin, G. Blake Meike, Masumi
Nakamura, Programming Android, 2

nd
 ed., Sebastopol, California:

O’Reilly Media, September 2012.

[6] Official JHipster documentation, [Online], Available:
http://jhipster.github.io/v2-documentation/

[7] Official Gradle documentation, [Online], Available:
https://docs.gradle.org/current/javadoc/

