
Software System for Newspaper Distribution
Iulia-Kinga Marton*, Zoltán Szabó**, Károly Simon***, Norbert Kandó ****

* Babeş-Bolyai University, Cluj-Napoca, Romania
** Babeş-Bolyai University, Cluj-Napoca, Romania

*** Codespring LLC, Babeş-Bolyai University, Cluj-Napoca, Romania
**** Codespring LLC, Cluj-Napoca, Romania

kinga_marton@yahoo.com
szabozoltanbors@gmail.com
simon.karoly@codespring.ro
kando.norbert@codespring.ro

Abstract—The paper presents a software system for
newspaper distribution. The system contains a central
server, an Android client application and a web application
for data administration.

Application data (customer database, distributor profiles,
distributions, etc.) is managed by the system administrators
using the web application. The application also generates
statistics and provides opportunity to create checklists for
verification.

The mobile client application is used by the distributors.
Using this application, they can view their task list, the
nearest addresses where they have to deliver newspapers
and they can report feedback related to deliveries.

I. INTRODUCTION
The article presents the features, architecture and

implementation of the “Newspaper Distribution” (NPD)
software system. The main purpose of the software is to
facilitate the work of newspaper publishers and
distributors.
Without using proper software solutions for supporting

the distribution process, related data management is not
an easy task. Sometimes the data is stored in files (e.g.
Excel files) and it is handed over to the distributors in a
printed format. Using this method, it is hard to keep the
data organized and on the other hand, the printed version
is easy to lose, and searching for unknown addresses
implies a great effort. The lack of feedback regarding the
deliveries could be a problem as well.
The aim of the NPD system is to eliminate the

mentioned problems.
The software includes a central server, a mobile

application and a web-based administration interface. The
data can be managed by the system administrators using
the UI provided by the web application. The distributors
can check their tasks using the mobile application. They
can see the nearest addresses where they have to deliver
newspapers, and they have the possibility to send
feedback about the delivery process. Based on these
feedback statistics can be visualized on the administration
web user interface. The system also provides support for
generating checklists in order to verify the distributors.

The first section of the article presents the project itself
with its requirements and architecture. This section is
followed by the description of the used technologies. In
the third section some details are described about the
implementation, including the main challenges
encountered during the development process. The next
section presents the used tools and methods through the
project followed by the usage of the software. At the end
of the article the conclusions and possibilities of feature
enhancement are presented.

II. THE NPD PROJECT

A. Requirements
The main features available through the UI provided

by the web application are the following:
 list, sort and filter the customers’ data;
 manage the customers’ data;
 manage the distributors’ data;
 assign streets to distributors;
 manage the distributions: create, start and stop

distributions;
 list, sort and filter distribution-related data (the

list of the customers assigned to different
distributors);

 view distribution-related statistics;
 import the customers’ data from Excel file;
 generate checklists for distributor verification,

save feedback and ratings received from the
customers.

The main features provided by the mobile client
application are:
 After logging into the application the task list is

synchronized (the distributor receives the list of
his assigned tasks).

 Automatic address suggestion: the nearest
address is automatically selected by the
application based on the current position of the
distributor.

 Sending feedback: the distributor can send
feedback regarding the deliveries. There is a
possibility to choose feedback messages from a

mailto:kinga_marton@yahoo.com
mailto:szabozoltanbors@gmail.com
mailto:simon.karoly@codespring.ro
mailto:kando.norbert@codespring.ro

predefined list (e.g. “successful delivery” or “did
not open the door”) and custom comments can be
formulated too.

 GPS coordinate refinement: the coordinates
assigned to an address can be modified by the
distributors based on their current position;

 Local data storage: the data has to be stored
locally on client side and synchronized later with
the server. This mechanism could be useful when
internet connection problems are encountered
during the distribution process.

B. Architecture
The NPD system can be divided into two main parts:

the server and the mobile client application.
The server includes further subsystems. It provides

the data model, communicates with the relational
database management system and it contains the
Repository Layer for the management of the persistent
data. It also provides a Service Layer, which contains
methods related to the business logic of the application.
These methods can be accessed through service interfaces.

The web components are situated in the Web
Application module. The responsibility of these
components is to provide the web UI for data
administration.

Some features are published as RESTful web services.
These services are implemented by the REST service
module. The Android application communicates with the
server through this RESTful API [1].

The project architecture, including the relations
between the subsystems, is shown in Figure 1.

Figure 1: Architecture of NPD

III. USED TECHNOLOGIES
The NPD project is developed in Java and JavaSrcipt

programming languages, using advanced Java
technologies.

The server side is based on the Java Enterprise Edition
(Java EE) [2] specification. The Glassfish application
server is used, as the reference implementation of this
specification. The components are Enterprise Java Beans
(EJB) [3] in the repository, service and API layers.
Specifically, stateless session beans are used,
communicating through local interfaces. The full life-
cycle of these components is managed by an EJB
container provided by the Java EE application server,
according to the Inversion of Control (IoC) [4] design
pattern. The dependencies between the components are
managed based on the Dependency Injection (DI) design
pattern.
The model classes representing the main entities

within the system are implemented based on the Java
Persistence API (JPA) [5] specification and are validated
based on the BeanValidation specification. EclipseLink
[6] is used as a persistence framework, which is the
reference implementation of the JPA specification.
The newspaper distribution processes are managed

separately in different regions. The region-specific data
(customers, distributors, etc.) has to be isolated: each user
has only rights for accessing data related to a single
region. This isolation is implemented by using the multi-
tenancy mechanism. The multi-tenancy support is
provided by an EclipseLink-dependent implementation,
based on EJB interceptors.
The web interfaces are created with the Vaadin

framework [7].
The client-server communication is based on RESTful

web services and it is solved using the Jersey framework,
which is the reference implementation of the Java API for
RESTful Services (JAX-RS API) specification.
The system security relies on two different

mechanisms. At the level of the REST API a token based
authentication is used. Within the Web Layer user
credentials are used for authentication and authorization,
according to the Java Authentication and Authorization
Service (JAAS) [8] specification.
As mobile development tool Android SDK [9] has

been used. Within the mobile application the map is
displayed using the Google Maps API. The Retrofit
library is used for sending HTTP requests, and for
making conversions between the Java Data Transfer
Objects and their JSON representations. Database
operations are supported by the OrmLite persistence
framework.

IV. IMPLEMENTING THE PROJECT

A. NPD Backend
The NPD Backend module provides the model

package containing the main entities of the system, the
data access layer and the business logic components
accessible through the service layer.

The model package contains the central entities,
managed according to the JPA specification. The Java
Persistence API (JPA) is a Java specification for
relational data management in Java applications. The
model classes are JPA entities, with private attributes

accessible through public getter and setter methods. Most
of the entities extend the BaseEntity class, which
implements the Serializable interface and extends the
AbstractModel class. The MultitenantEntity inherits from
the BaseEntity class and it is used for realizing the multi-
tenancy. All entities have to be unequivocally identified,
so that the AbstractModel class contains a universally
unique id (UUID). Furthermore, each entity has an id,
which is generated by the database management system
and it is inherited by the entity classes from the
BaseEntity superclass. For separating the data related to
different regions, a tenant id is provided by the
MultitenantEntity superclass for each multi-tenant entity.

The repository package contains interfaces for
specifying the data access operations, and a sub-package
containing the implementations for these interfaces. The
operations are implemented within managed components,
corresponding to the EJB specification. Stateless session
beans are used, communicating through local interfaces.
The repository components are organized into a hierarchy.
The core database operations (CRUD operations) are
implemented within a superclass. This superclass is
extended by the repository components. For each entity
class a separate repository class is considered, providing
specific data access operations for the given entity. Most
of the operations are implemented using Java Persistence
Query Language (JPQL) queries. There are also queries
with a structure, which can be determined only at runtime
(e.g. complex filtering conditions). These queries are
created dynamically using the Criteria Query API
included into the JPA specification. In case a data access
operation fails, the exception is logged and a layer
specific exception is propagated to the upper layers.

The multi-tenancy support is realized based on an
EclipseLink-specific implementation, using EJB
interceptors included into the interceptor package. All
data access operations related to multi-tenant entities are
intercepted by these interceptors. Based on the
authenticated user the proper tenant id is always
configured before resuming the intercepted method
execution.

The components within the service package are
responsible for the more complex business logic
operations. The service layer components are also EJBs,
and they are communicating with the repository layer
through local interfaces. The operations provided by
these components are also published via local interfaces.
The DI design pattern is used for managing the
dependencies between the components. The dependencies
are injected by the EJB container, based on EJB or
Context and Dependency Injection (CDI) annotations.

The security mechanism is based on the JAAS
specification. The Java Authentication and Authorization
Service is a Java specification for implementing a
standard pluggable authentication module and
information security framework. In this project the JAAS
implementation is provided by the Glassfish application
server. For server side user management, a Glassfish
security realm is created, which contains a collection of
users assigned to different groups. The groups are

assigned to security roles. The authorization process is
based on these roles. A JDBC security realm is used, the
security-related data is stored within the application’s
database.

B. RESTful API
The communication between the mobile client and the

server is based on RESTful web services. According to
the REST architectural style the resources are accessed
using Uniform Resource Locators (URL) and the REST
commands are mapped to HTTP methods (GET, POST,
PUT, DELETE, etc.).

The RESTful web services were implemented using
the Jersey framework, which is the reference
implementation of the Java Api for RESTful Services
(JAX-RS API) standard. The module contains two
packages: a resource and an assembler package. The
resource package contains the Data Transfer Objects
(DTO). These resource classes receive the REST requests
and prepare and send the appropriate responses. The
classes that make the conversion between DTOs and the
entities are placed in the assembler package.

C. Web and Widgetset
The administration web application is based on the

Vaadin framework, only the login page and the error
pages are created using the Java Server Pages (JSP)
technology.

Vaadin is an open source framework for rapid and
effective web application development. On the server
side it uses Java Servlet technologies. On the client side
HTML and JavaScript is used. The UI is created using
server side Java components and the Google Web Toolkit
(GWT) technology is used in the background for creating
the views displayed on the client side. The
communication is based on Ajax techniques.

Within the NPD system the management of the web
components is realized based on the Context and
Dependency Injection pattern. The Vaadin CDI add-on is
used for this purpose. The charts are created by using the
dCharts Vaadin add-on.

The administration page can be accessed only by
users with administrator rights. The authentication and
authorization is done by the Glassfish server, according to
the JAAS specification.

D. Mobile
The mobile client application communicates with the

server via the provided RESTful API, so the requests are
mapped to HTTP requests. Retrofit library is used for the
implementation of the communication layer, including
the conversion between the Java Data Transfer Objects
and JSON objects. It collects the REST calls into Java
interfaces, and the operations can be invoked after
instantiating a corresponding RestAdapter.
Application settings are stored in the

SharedPreferences, while the application data is stored in
a local database. Local data manipulation is realized by
the OrmLite framework. It is a lightweight persistence

framework that allows mapping Java objects to the
database. Object-relational mapping can be specified by
using Java annotations. The framework also supports
transactional processing.
For implementing the map services the Google Maps

API is used.

V. TOOLS AND METHODS
During the development process agile development

principles [10] have been followed, using Scrum [11]
methodologies. For project management a web based
Kanban board has been used, provided by the Trello [12]
project management tool.

Mercurial [13] has been used for version control,
together with the TortoiseHg [14] client application and
the RhodeCode central repository management system.

The build processes and the dependency management
have been ensured by Apache Maven [15] and Gradle
[16]. The Maven-Gradle plugin has been used, in this
way the Gradle build for the Android application is also
launched by Maven. Artifactory has been used as a
repository management system for the external
dependencies. Jenkins served as a Continuous Integration
[17] system. XWiki is used for editing and sharing
project-related information and documentation.

The code quality has been maintained using
SonarQube, which covers eight quality aspects:
comments, coding rules, potential bugs, complexity, unit
tests, duplications and architecture.

VI. USING THE NPD
After a successful authentication the administrator can

access data related to customers, distributors,
distributions and statistics by using the web UI. Each
administrator has access only to data corresponding to a
given region. The administration page is composed of six
main tabs: Distribution, Distributors, Customers,
Statistics, Verification, and Settings (Figure 2).

Figure 2: Administration page

The Distribution tab gives the possibility to control
the distribution cycles (creating, starting and stopping
distributions). It also provides information regarding the
tasks from a selected distribution. These tasks can be
filtered based on different criteria: distributor, street,
status, date or any combination of these.

The Distributors page (Figure 3) is used for
distributor data management, for registering new
distributors, modifying existing profiles and assigning

streets to distributors. Also, for each distributor an
average rating is displayed based on customers` feedback.

Figure 3: Distributor profile update on the administration page

The Customer tab is used for managing the
customers’ data. The list of customers can be filtered
based on different criteria: name, street, status or any
combinations of these.

The application generates different statistics based on
distributor feedback. These statistics are presented under
the Statistics tab (Figure 4). There are three types of
statistics: a pie chart with the current state of a selected
distribution, a pie chart displaying the performance of a
selected distributor within a selected distribution, and a
third chart showing this data in a daily breakdown.

The administrators can generate different checklists
using the Verification tab. These checklists can be used to
verify the distributors, by asking the selected customers
about the quality of the service. The received customer
feedback and rating is saved by using the web UI.

Customers’ data can be imported/exported from/to
Excel files using the Settings tab. The import process can
be customized: the administrator has several options
related to data processing (e.g. what happens if the data
appears both in the database and the Excel file, or if the
data appears in the database, but is missing from the
Excel file).

Figure 4: Statistics tab

The main goal of the mobile application is to provide
a handy tool for the distributors to make the distribution
process easier. They receive tasks related to a given
distribution, get directions for each address and can send
feedback about the deliveries. The application consists of

two main views: a map view providing directions and a
list view, which contains the current tasks.

Figure 5: Views of the Android client

The map view (Figure 5) includes the “delivered” and
“undelivered” buttons for sending feedback about
deliveries. After pressing the “undelivered” button a pop-
up window appears where the distributor can select from
predefined messages indicating the reason of the failure
and there is also a possibility to add custom comments.
After sending a feedback, the application searches the
next address based on the associated GPS coordinates.
Within the list view the tasks are ordered by street names
and house numbers and there are filtering possibilities by
street name and status. A GPS icon is displayed for each
address, in order to specify more accurate GPS
coordinates.

The mobile application supports a caching mechanism,
which ensures that the data is stored locally, even if there
is a temporary Internet connection problem. The data is
saved into a local storage and the application always
checks if there is unsynchronized data, which has to be
sent to the server. Both views have a status bar at the
bottom of the screen, which indicates the status of the
data (synchronized or not synchronized). After a logout
operation all locally stored data are deleted. Before this
data removal the user receives a warning message if the
storage still contains unsynchronized data.
Users have several configuration possibilities within

the application available under the Settings menu.

VII. CONCLUSIONS AND FURTHER DEVELOPMENT
NPD is a software system for facilitating the work of

newspaper distributors, providing monitoring and control
tools for distribution managers. The system can be
extended with several further features. The following are
a few possibilities for extending the administration page:
 customers shown on a map, clustering support

and eventually a heatmap based visualization;
 automatic validity check for addresses;
 elimination of the “one street - one distributor”

constraint (in the current version only one

distributor can be assigned to addresses within a
given street);

 more algorithms for generating verification lists.
Some further features for the mobile application:
 notifications about new distributions;
 route proposals for a given address;
 different reports regarding previous and current

distributions.
Moreover a central administration interface

could be developed for managing the regions and
regional system administrators and for providing global
statistics.

ACKNOWLEDGMENT
The infrastructure required for the development

process has been provided by Codespring LLC, and
therefore the authors would like to express their special
thanks for this support.

REFERENCES

[1] Official web page of JAX-RS. [Online] [Cited: May 25, 2015.]
https://jax-rs-spec.java.net/.

[2] Official web page of the Java Enterprise Edition. [Online] [Cited:
May 25, 2015.]
http://www.oracle.com/technetwork/java/javaee/overview/index.
html.

[3] Andrew Lee Rubinger and Bill Burke, Enterprise JavaBeans 3.1,
6th Edition; O'Reilly Media, 2010.

[4] Martin Fowler, Inversion of Control Containers and the
Dependency Injection pattern; 2004.

[5] Official web page of the Java Persistence API related resources.
[Online] [Cited: May 26, 2015.]
http://www.oracle.com/technetwork/java/javaee/tech/persistence-
jsp-140049.html.

[6] Official documentation of EclipseLink 2.5. [Online] [Cited: May
7, 2015.]
http://www.eclipse.org/eclipselink/documentation/2.5/eclipselink
_otlcg.pdf.

[7] Marko Grönroos, The Book of Vaadin: Vaadin 7 Edition - 4th
Revision; Vaadin, Ltd., 2014.

[8] JAAS Reference Guide. [Online] [Cited: May 17, 2015.]
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaa
s/JAASRefGuide.html.

[9] Official web site of Android. [Online] [Cited: May 17, 2015.]
https://developer.android.com.

[10] Robert C. Martin, Agile Software Development, Principles,
Patterns and Practices; Pearson Education, Prentice Hall, 2002.

[11] Kin h. Pries, John M. Quingley, Scrum Project Management;
Taylor an Francis Group,LLC., 2011.

[12] Official web page of the Trello. [Online] [Cited: May 25, 2015.]
http:// trello.com.

[13] Official web page of Mercurial. [Online] [Cited: May 25, 2015.]
http://mercurial.selenic.com.

[14] Official web page of TortoiseHg. [Online] [Cited: May 25, 2015.]
http://tortoisehg.bitbucket.org.

[15] Official web page of Apache Maven. [Online] [Cited: May 25,
2015.] http://maven.apache.org.

[16] Official web page of Gradle. [Online] [Cited: May 25, 2015.]
http://gradle.org.

[17] Jez Humble, David Farley, Continuous Delivery: reliable
software releases through build, test, and deployment automation;
Pearson Education, Inc., 2011.

	INTRODUCTION
	THE NPD PROJECT
	Requirements
	Architecture

	USED TECHNOLOGIES
	IMPLEMENTING THE PROJECT
	NPD Backend
	Web and Widgetset
	Mobile

	TOOLS AND METHODS
	USING THE NPD
	CONCLUSIONS AND FURTHER DEVELOPMENT
	ACKNOWLEDGMENT
	REFERENCES

