
GeoQuesting:

Mobile Adventure Game and Web-Based

Game Editor

Beáta Brassai, Boglárka Varga, Károly Simon, Tamás Török-Vistai

Codespring LLC, Babeș-Bolyai University
brassaibeata15@gmail.com

vargaboglarka91@gmail.com

simon.karoly@codespring.ro

torok.tamas@codespring.ro

Abstract—The GeoQuesting project is

presented, including the functional overview of the

components and some details regarding their

implementation. Development tools, patterns and

technologies are also described. The project

includes a mobile game application and a web

application for game creation.

The main component of the project is an

adventure game running on mobile devices. While

playing the game the player has to solve quests

and to find checkpoints in different locations. A

web-based user interface is provided for editing,

managing and publishing games easily. In this way

various quests can be created using different types

of conditions (question answering, finding

checkpoints based on GPS position etc.).

GeoQuesting can be used in different

domains: such as education (e.g.: a game

showcasing historical places in a city), tourism

(e.g.: a game for touring landmarks in a region),

marketing, entertainment industry etc.

Keywords— Adventure game, GPS, NFC,

Client-Server Architecture, RESTFul Web

Services

I. Introduction

GeoQuesting is a quest-based adventure game

running on mobile devices. Players have to complete

quests by fulfilling certain conditions in order to

progress within the game. The games can be

personalised for a wide variety of topics and their

structure can also be customised. Depending on how

the tasks are formulated and the checkpoints

composed, the game can be applied as a tourist guide,

it can be used in education or it can be simple

entertaining. For example, a use case can be a

historical game, during which the player can visit an

itinerary of monuments in a town, can be guided to

important buildings, and at certain locations he or she

can learn information about famous historical figures.

The application can lead the player to a location with

the help of directions. When the player arrives at the

correct spot the game can ask the player to turn at a

given compass heading, or it can ask some questions

which the player has to answer correctly in order to

advance to the next condition. The application also

supports conditions that require reading NFC badges.

These are placed at given locations by the game

creators. If a badge is successfully read by the

application, it can be validated that the player indeed

has arrived at the correct place.

The project provides a web user interface for the

game creation and game management. The users can

create new or edit existing games. They can add

quests to a game by combining different types of

checkpoints (GPS, NFC), orientation conditions and

adding questions to be answered. These quest

conditions can be freely combined by the editors in

order to achieve the desired game. After finishing the

setup of the game the editor is able to publish the

game. Published games are visible and available for

playing to all GeoQuesting users.

II. Development methods and tools

The development process of GeoQuesting is

based on agile principles; the team used SCRUM

methodology [1] during the implementation. The

project uses Mercurial distributed version control

system to manage and track changes of the source

code. The central mercurial repository was handled

by the RhodeCode repository manager. The build and

dependency management system of the GeoQuesting

project is provided by the Apache Maven software

project management and comprehension tool.

According to continuous integration principles [2] the

project is required to be kept in a compiling and

runnable state after each commit. This is achieved

with Jenkins, an open source continuous integration

server. For ensuring the maintainability of the source

code SonarQube is being used to manage code

quality. SonarQube analysis is also run with Jenkins.

mailto:brassaibeata15@gmail.com
mailto:vargaboglarka91@gmail.com
mailto:simon.karoly@codespring.ro
mailto:torok.tamas@codespring.ro

 The web-based user interface of the

GeoQuesting project is run on the GlassFish JavaEE

application server.

III. Technologies

GeoQuesting is developed using Java based

technologies. The server side is developed with the

JaveEE platform [3]. JaveEE provides components

for helping developers build multi layered component

based distributed enterprise applications. The server

side business logic is implemented via EJB

(Enterprise Java Beans) [4] components; the

dependencies between these components are

managed using the DI (Dependency Injection) pattern

implemented by the CDI (Context and Dependency

Injection) framework.

The data access layer is based on JPA (Java

Persistence API), which provides an object-relational

mapping of the web application domain classes to

relational database tables. GeoQuesting is using

EclipseLink JPA reference implementation.

The communication between the client

application and the server is based on REST

(Representational State Transfer) API using the

HTTP protocol for data transport. The REST API is

implemented based on the JAX-RS (Java API for

RESTFul Web Services) standard using the Jersey

reference implementation. For serializing the data

sent to the client application the DTO (Data Transfer

Object) pattern is used [5]. The JSON (JavaScript

Object Notation) data format is used as the wire

format when transferring data over HTTP in order to

achieve cross platform and language independent

communication. Documentation and testing of the

API endpoints is carried out using Swagger

framework.

The web user interface is implemented with the

help of Vaadin Open Source UI toolkit framework

[6]. Third party Vaadin “add-ons” are used to provide

features such as the Leaflet based map view and

support for CDI functionality in Vaadin UI

components.

The mobile game client is implemented as an

Android application with the help of the Android

SDK, which provides development tools, libraries

and documentation.

For monitoring and tracking the flow of the

application the Slf4j logging abstraction framework is

used backed by the Log4j as the concrete logging

implementation.

The Google Guava library provided EventBus

class is used for publish-subscribe based

communication between the components of the

application. This pattern keeps the communication

simple and the components loosely coupled easing

the maintainability of the source code.

In order to ensure the correctness and validity of

the persisted data JSR-303 specification based

annotations are used on the domain model classes to

define validity constraints. The Hibernate Validator

framework is used to evaluate these constraints

before saving the data into the MySQL Database.

In order to increase the productivity while

developing the application, the JRebel tool is used for

deploying new versions of the complied Java classes

under the running container without the need for a

restart, thus greatly reducing the deployment time.

On the server side map services are provided by

an Open Street Maps layer displayed in Leaflet. On

the mobile client the Google Maps APIs are used for

navigation and routeing.

The GeoQuesting project uses the Gravatar

service to display the profile images of users. The

profile pictures are looked up in the Gravatar service

by using the user’s email address.

IV. The GeoQuesting project

The following section describes the GeoQuesting

project’s requirements, presents the architecture of

the application and some implementation details.

A. Requirements

Server side
One of the responsibilities of the server is

managing the entities in the MySQL database. The

Data Access Layer handles the saving, deleting and

querying of the entities. The Service layer of the

server application builds on the Data Access Layer

and contains the GeoQuesting specific Business

Logic.

The server side also includes the web user

interface, which provides UI for user registration,

views for creating, editing and publishing games.

There are provided UI elements for editing the

games and the quests that are related to them. For

example, when editing a GPS condition for a quest

the user is given a map view where he or she can

select the desired coordinates by clicking on the map.

In order to compensate the inaccuracies of the GPS

position provided by the mobile device, the user is

able to specify a margin of error, within which the

GPS position is accepted. When creating a question

based condition the user is able to specify multiple

correct answers for that particular question. This is

important since for some questions the players can

provide multiple correct answers. For example, if the

answer is a numerical value, it can be written out

using letters or using digits. For easier game

management the users are able to sort and filter the

games available in the system.

The server also provides a REST API for

communicating with 3
rd

 parties such as the Android

based game client application.

Client side
The gameplay for the created games on the

server side takes place on the mobile game client. The

client uses the server provided REST API calls for

retrieving the games, but also to upload the progress

of the games.

The player on the mobile client can browse the

list of the published games, view the details about a

given game and also select one for play.

After starting the game the user is presented with

different quests that the user needs to complete in

order to finish the game. A quest can be made up

from one or more conditions. The application

presents the conditions in order, one at a time for

completing.

While playing the game the user will encounter

different views for different types of conditions. For

example: a location based condition in order to be

completed requires that the user arrives at the given

GPS position. When solving a location based

condition the user is presented with a map and a

recommended route for reaching the correct position.

When confronted with a direction based condition the

user is shown a compass to help him in the

orientation and to turn to the appropriate heading.

B. Architecture

Figure 1 describes the system’s components and

the relationship between them.

The appropriate Java classes for the domain

model entities of the server application are found in

the model package. The backend, Web UI and API

components rely on the model entities.

The backend component includes the Data access

and service layers. The low level data querying,

inserting and deleting is implemented in the

repository layer using the JPA Entity Manager. The

service layer interfaces provide the application logic

to the web user interface components and to the

REST API.

The web component provides the interface for

the user in order to access the application. The user

interface components are built according to the MVC

pattern. This way the different concerns are separated

among the classes. The view class is responsible for

displaying the model data. The controller handles the

actions performed on the data and forwards it to the

service layer.

A similar structure of the components can be

found on the mobile client application. There is also a

model package but this contains the client specific

model classes.

Largely, the model classes are the simplified

versions of their server-side model counterparts. This

approach was chosen because the client application

only uses a part of the information that is stored on

the server side.

The communication between the two main

components of the project, the server and the client

side is provided by the REST API. The REST API

uses DTO objects to transfer the data between the

API endpoints. Assembler classes are used to convert

the server and client model objects to DTO objects

that are serialized into JSON and sent over HTTP.

The mobile client application uses a SQLite

database to store user data. The Controller component

is responsible for accessing the data; for business

logic operations; as well as for handling the data from

the device’s sensors.

The client side application provides an easy-to-

use interface for the visualization of conditions

(showing maps, displaying a compass) or tracking the

progress of the games (showing progress bar) etc.

C. Implementation

Condition evaluation
For evaluating the completeness of the conditions

different device sensors are used by the client

application.

When evaluating a GPS based condition the

application uses the device’s GPS signal receiver.

The position determined by the sensor is compared

with the position found in the quest, if it is within the

given margin of error the condition is considered

fulfilled.

Orientation conditions are validated by reading

the compass heading from the device’s

magnetometer. If the reading is within the interval

specified in the quest, the application accepts that the

user indeed has turned to the correct direction with

his mobile device.

Because the availability of the GPS signal is

limited inside buildings, the position of player can be

determined with the help of NFC badges that are

placed at certain places and read by the NFC module.

NFC is a communication standard based on short

range (less than 10 cm) radio waves. The NFC

protocol does not employ security settings at all;

connection is established by placing the NFC enabled

devices near each other. The lack of setup provides an

easy and frictionless gameplay while reading NFC

badges during quests.

When solving question-answer type conditions in

order to compensate for spelling mistakes or lack of

accents use by the users the Jaro-Winkler distance

algorithm [7] is used for answer validation. The

mobile client computes the distance, represented by a

number in the range of 0.0 and 1.0, between the

answers provided by the user and the correct answers

supplied by the server. The closer the distance

Figure 1. GeoQuesting’s architecture

number is to 1.0 the more similar is the provided

answer. When computing the Jaro-Winkler distance

the algorithm takes into consideration the number of

matching characters and the number of transposed

characters of the two strings and also the length of

common prefix at the start of the words. If this value

is above 0.85, the game accepts the answer provided

by the player as being correct.

Data transfer
Data exchange between the server and game

client side is accomplished by the use of DTO

objects. These objects are constructed from the

corresponding model objects by the use of

Assemblers. The responsibility of the Assembler

class is the conversion of domain model objects into

DTO objects used by the API and reconversion of the

DTO objects received by the API into domain model

objects. The assemblers and DTO classes also support

the serialization / deserialization of model objects that

are organized in a class hierarchy. When for example

un-marshalling from JSON a child DTO object the

assembler will automatically create the correct child

domain model object and it’s ancestor objects. This

way the API supports the polymorphic conversion

from DTO to domain model objects.

D. Case study

From user’s point of view GeoQusting provides

two application interfaces: the web-based game editor

interface and the mobile game client application.

For presenting the functionalities of the

GeoQuesting project, the following example is

presented.

After successful login the user is present with the

main of the web application. The user is able to view

the list of already existing games in the system

alongside with information about them (Figure 2).

When creating a new game the editor has to

specify the name (in the example “Visit Cluj-

Napoca’s sights”) and short description. Optionally

the user can provide a region for the created game

(e.g. “Cluj-Napoca”) this way the users will have the

ability to search for games that are playable in a

certain region close to them.

After creating the game editors are required to

add one or more quests to the game that the users

have to complete in order to finish the game.

Quests are created by combining different types

of conditions. These can be put together freely as

desired by the game creator.

When creating a question-answer condition

(Figure 3) the user specifies the question (e.g. “What

is the name of the main square of Cluj-Napoca?”) and

the list of possible answers to the question. The

answers for the question can be varied e.g. the

Hungarian or Romanian name of the city Cluj-

Napoca. In addition to multiple correct answers

provided by the editor the mobile client will employ

fuzzy text matching based on the Jaro-Winkler

distance in order to compensate for some spelling or

typo mistakes.

If the game requires that the player is at a given

location (in our example at the Main Square of the

city) the editor can add a GPS location based

condition (Figure 4). The editor can specify the

position by making a selection with a mouse click on

the map. The editor can also specify a radius around

the selected position within which the player’s

position is considered as being at the correct location.

When playing the game, the player is provided with a

map and a recommended route from the user’s

current position to the quest objective (location).

If it is important that the player is looking in a

specific direction, e.g. toward the statue of King

Matthias, the game editor can add a direction based

condition. This is done by providing an angle range

e.g. from 90 to 120. During gameplay the player is

helped to face the correct direction by displaying a

Figure 2. Web game editor interface - Public game list

Figure 3. Question-answer condition

Figure 4. GPS condition

compass based on the devices magnetometer (Figure

2).

If the position of the player needs to be

determined in places where the GPS reception quality

is low e.g. inside building, editors can add NFC based

conditions to the games. When creating the condition

editors enter the unique id of the NFC badge. Then

they place these NFC badges at the locations where

they want the users to be. When playing the game the

players search for the physical location of these

badges in the field. When these badges are located by

the players they touch their devices to the badge, the

device will read the unique id of the badge and will

compare it with the server provided one. If it matches

with the one provided by the game editor, the game

validates the location of the player.

Some conditions can be specified multiple times

per quest e.g. question-answer conditions but others

only once e.g. GPS conditions. If the game would

allow specifying multiple GPS conditions per quest,

the quests would be unsolvable since the player

cannot be in multiple places in the same time. A

game can contain as may quests as the game editors

desires.

After finishing the editing of the game, the editor

can publish the game making it publicly available to

other users for play, optionally giving a validity

period.

The players can start games at any time, and can

also postpone the completion of the game. Their

progress is automatically saved and they can resume

the game at a later time and finish it.

V. Conclusions and further

development

GeoQuesting is an entertaining game useful in

different domains. Games can be easily customized

using the web interface. The system is easily

extensible, scalable and maintainable.

There are several further development

possibilities. New condition types could be

introduced, for example places identified by barcodes

for devices without NFC reader. Augmented reality

contents could be displayed on the camera view.

A gameplay feature could be introduced for

players to share virtual objects with each other using

NFC.

An internal evaluation (games rating), score

(rankings) and reward system could be evolved.

Automated filtering possibilities could be provided

for the games (e.g. based on user’s location or

features supported by the mobile device).

REFERENCES

[1] R. C. Martin, Agile Software Development, Principles,
Patterns, and Practices, Prentice Hall, 2006.

[2] P. M. Duvall, S. Matyas, A. Glover, Continuous
Integration: Improving Software Quality and Reducing

Risk, Addison-Wesley, 2007.

[3] A. Gupta, Java EE 7 Essential, Sebastopol, California,
USA, O'Reilly Media, 2013.

[4] A. E. Rubinger and B. Burke, Enterprise JavaBeans

3.1, 5th ed., Sebastopol, California, USA, O'Reilly
Media, 2006.

[5] M. Fowler, Patterns of Enterprise Application

Architecture, Addison-Wesley, 2002.
[6] M. Grönroos, Book of Vaadin: 4th ed., Turku, Finland,

Vaadin LTD, 2013.

[7] W. E. Winkler, String Comparator Metrics and
Enhanced Decision Rules in the Fellegi-Sunter Model

of Record Linkage, Proceedings of the Section on

Survey Research Methods, American Statistical
Associatio n, pp. 354–359, 1990.

Figure 2. Direction condition

