
FestivApp
Program Manager and Browser System for Large Events

Anna Kiss
Babeş-Bolyai University
Cluj-Napoca, Romania
annacs94@gmail.com

Károly Simon
Babeş-Bolyai University
Cluj-Napoca, Romania

simon.karoly@codespring.ro

Zoltán Szilágyi
Codespring

Cluj-Napoca, Romania
szilagyi.zoltan@codespring.ro

Abstract—Nowadays events consisting of hundreds of happen-
ings are encountered more frequently. The FestivApp application
aims to facilitate the navigation in events’ program by providing
useful functionalities for browsing them. It also provides more
than the already existing applications have to offer by being
able to handle multiple events simultaneously. Users can browse
the program of the currently chosen event using the mobile
application, while organizers can edit their programs’ data
through the web interface. Both client applications rely on data
served by FestivApp’s server.

This paper aims to present the FestivApp project. Firstly, it
mentions the important decisions concerning the architecture.
Secondly, it describes the implementation of the components
referring to the main technologies, tools and methods that were
used during the development process. Lastly, the features of the
application are demonstrated using some examples.

I. INTRODUCTION

There are many festivals, conferences or other cultural
events with hundreds of happenings. Their program can
become incomprehensible and hard to navigate in. For a
participant the browsing of a printed program guide might be
uncomfortable and time-consuming. Furthermore, in this way
parallel events are presented only in a linear way, which is not
transparent enough, thus the participant may miss important
happenings. Some festivals offer mobile applications to facili-
tate the browsing of the program and to offer information about
the locations and the presenters. But software development is
costly and there are event organizers that could not afford an
application. FestivApp offers a satisfying solution for them.
In addition, it is more comfortable to access the program of
multiple events from a single application than to use separate
applications for each festival/conference. FestivApp can han-
dle more events uniformly, this is the most important aspect
that defines its functioning. Within the mobile application,
users may choose among multiple events, organizers can edit
the program of their events on the administration interface.
Both client applications are served with data by the server. In
accordance with this, the project includes an Android mobile
application, a web interface and a central server.

II. THE FESTIVAPP PROJECT

A. Functionalities

In the Android application, events are shown on separate
pages (tabs), each tab corresponding to a day. The user can

easily change between the programs of two days (swipe
between tabs). The events appear ordered by their start date
and when the view is loaded, it scrolls automatically to the
current date. It is possible to filter the program by categories
and locations and to search based on the name of events or the
name of presenters. Users can read detailed information about
the events and they can mark them as favourite. Favourites
appear in a separate list, and the user receives reminders before
these events. Detailed description about a location is available
on a separate page, where an offline map appears with the
location’s place pinned.

The aforementioned functionalities are also available with-
out Internet connection. This is necessary because in the areas
where large festivals take place the network is often over-
loaded, therefore accessing the Internet might be problematic.
To ensure the proper functioning of the application, offline
mode should be supported.

Operations that require Internet connection include the
synchronization of an event’s program with the server. Internet
connection is required for navigation to specific locations
too (Take me there! functionality), because this happens with
the help of the Google Maps application. When they are
connected to the Internet, users can also receive notifications
from the organizers (push notification functionality, e.g. when
the program of the event is changed).

Organizers and the system administrator can enter the web
administration interface. Based on their privileges, they have
access to different resources. Organizers are able to check
and edit their festival’s program. They can add new events,
presenters, locations, categories; they can delete or modify the
data of already existing events; they can upload the festival’s
map and pin the locations’ coordinates on it. Push notification
messages can also be broadcasted from this administration
interface.

The system administrator is not authorized to modify festi-
vals’ data, he is able only to create new festivals (without any
event), he can register organizers and he can assign organizers
to festivals (grant privileges).

The server stores all the data in a single database, it is able to
handle more festivals/conferences uniformly. It communicates
with the clients through a RESTful API, answers their queries,
serves them with data and executes the requested operations. If
an error occurs, the corresponding error code will be included



in the answer’s header.
The festivals’ data can be queried by any type of user, but

deleting and modifying is only allowed to organizers. Users’
information can be accessed only by the system administrator.
User authorization is done using the most recent security
solutions.

B. Architecture

The main components of the system are: the server, the
Android client and the web user interface (Fig. 1.). These
modules communicate based on the DTO (Data Transfer
Object) pattern. The DTO classes used by every component
are placed in the Common module which in this way, becomes
the fourth component of the system.

The server contains the backend and the implementation
of the RESTful API. The backend has a multilayer architec-
ture: the Repository layer is responsible for maintaining the
connection with the database and manipulating the data; the
application’s main logic is placed in the Service layer; data is
represented by model classes that can be found in the Model
package. The API module communicates with the Service
layer, making service calls when data needs to be queried
or operations need to be performed in the database; the API
module parses its responses into DTOs and forwards them to
the client in JSON format through the HTTP protocol.

The Android application’s architecture follows the MVC
(Model-View-Controller) pattern: the AndroidClientModel
module contains the model classes that represent the data;
the AndroidClientView module includes view classes that
determine how data is presented on the screen of the de-
vice; the AndroidClientController module provides controller
classes containing the main logic of the client application. The
Android client communicates with the server with the help of
the ApiClient module that is able to send requests, to receive
responses and to deserialize them into Java objects. The local
storage of the queried data in the device’s memory is solved
by the Cache module.

Similarly to the Android application’s architecture, the
MVC pattern is followed by the web interface’s architecture
too. Beside the modules corresponding to the model, view
and controller components, it contains a Service module
responsible for the API requests and for receiving the answers
from the server.

III. THE SERVER

The most complex component of the system is the server,
that has been written in Java language. Its implementation
was challenging mainly because of the complexity of the
application logic and the abundance of applied technologies.
This section presents the server component by analysing its
architectural layers separately.

A. Data model

The central entities of the system are JPA (Java Per-
sistence API) entity classes. Every class is the descendant
of the AbstractModel that has one single field, the

Server

Backend
<<module>>

Api
<<module>>

Model
<<module>>

Service
<<module>>

Repository
<<module>>

Common

DTO
<<module>>

AndroidClient

AndroidClientModel
<<module>>

Cache
<<module>>

ApiClient
<<module>>

AndroidClientController
<<module>>

WebClient

Ui
<<module>>

WebClientModel
<<module>>

Controller
<<module>>

WebClientView
<<module>>

Services
<<module>>

AndroidClientView
<<module>>

Fig. 1. The components of the server

UUID. This uniquely identifies the objects in the system. The
BaseEntity class can be found on the next level of the
hierarchy. Its single field id corresponds to the primary key
in the relational database table corresponding to the class.

To reduce data transfer between the server and the
client applications, it is possible to query only the
data that has been modified after a specified date.
The SynchronizableEntity abstract class is im-
portant because of this synchronization mechanism: its
lastModified field stores the timestamp corresponding to
the date when the entity was last modified, its enabled field
marks whether the entity is enabled or not. Changing the value
of the enabled field to false represents the deletion of the
entity. Its introduction was necessary because otherwise the
client applications would not be notified about data removals.

The Program class stores the attributes of a specific
festival (name, start date, time zone). The other classes that
store festival specific data can be enlisted below the Program
entity: events, presenters, locations, categories, etc. The as-
sociation between these classes and the Program class is
not expressed via aggregation; rather it is represented by
the tenant id that is equivalent with the id field of the
Program class.

B. Component Management and Project Configuration

The most important technology used for developing the
server module is the Spring framework. Spring is a lightweight
framework that facilitates the development of Java applica-
tions. Its core is the IoC (Inversion of Control) container
that manages the life cycle of the components and ensures
dependency injection [1]. Other Spring Projects were also
used during the development process, like the Spring Boot
framework that helped to create and configure the project.
Spring Boot takes over when it comes to initial project
configuration, providing default values and properties specific
to similar applications. In this way, an initial version of an
operational application emerges really fast.



C. Data Access Layer

Spring provides plausible solutions for achieving data
persistence: the Spring Data Access/Integration module en-
ables to easily switch between technologies realising data
access/manipulation, and with the Spring Data project the
implementation of the data access layer becomes really easy.
Especially by the predefined CrudRepository interfaces
that make it possible to write queries by only declaring
the corresponding methods. In the data access layer of the
FestivApp project there are Repository interfaces that
correspond to the main entity classes (EventRepository,
LocationRepository, etc.).

The FestivApp project handles the program of different
events uniformly, which means that the structure, the storage
and the querying of the diverse data happens in the same
way. This becomes possible with the help of the multitenancy
mechanism: entities with similar structure are stored in the
same table and are distinguished by a special identifier, the
tenant id. With an ORM (Object-relational mapping) frame-
work that supports multitenancy, queries stay simple because
the constraint introduced by the tenant id does not appear in the
query written at the level of the framework. The EclipseLink
framework (which is the reference implementation of the
JPA specification) has a really good multitenancy support,
this is the reason why it is used instead of Hibernate, the
ORM framework considered as default by the Spring Boot
configuration. In order for multitenancy to work, one must
ensure to set the value of the tenant id before every database
operation. In the FestivApp project, the tenant id corresponds
with the identifier of the program (programId). This appears
in every API call tied to the event program, it is stored in
a request scope bean, and when the API module forwards
the request to the service layer, there is no need for the
programId to appear in the parameter list. When the service
layer would call the methods of the data access layer, the
request is intercepted before the actual method invocation, with
an aspect named TenancyResolverAspect. In the advice
of the aspect the value of the programId is taken from the
request scope bean and it is assigned to the tenant id.

D. Service Layer

The service layer contains the main logic of the applica-
tion. It includes methods that check the parameters of the
received requests, preprocess them, call the data access layer
if necessary and forward the answer to the calling component;
it logs and handles the exceptions and throws layer specific
exceptions toward the upper layers (ServiceException).

In the FestivApp project the aforementioned logic is im-
plemented in Spring beans annotated with the @Service
keyword. The Service classes are structured in a simple hierar-
chy with a BaseService on the top. This contains methods
that every other Service class would implement. Among
these classes the AccountService has an important role -
that is it contains the operations concerning user management,
for example the registerNewUserAccount method. This
ensures that no other user is registered with the specified

identifier, hashes the password with the SHA-1 algorithm, and
calls the corresponding method of the data access layer to
persist the new information. Another example for a Service
class is the NotificationService that is responsible for
sending push notifications, using Google’s Cloud Messaging
service.

E. API

The FestivApp server publishes its resources through REST-
ful web services, which support messages in JSON format.
In order to implement the REST API the Spring Web MVC
framework has been used. The handlers that would be executed
when a request arrives are defined in the Resource classes,
annotated with the @Controller keyword. The URIs they
map correspond with the REST standard. For example a GET
request to the /api/programs/{programId}/events
endpoint would return the list of the events that appear in the
program of the event identified by the programId. A POST
request to the same URI would insert a new event entity into
the program. When the eventId is also concatenated to the
URI, a PUT request would update the entity identified with
eventId with the data encoded in the body of the message,
whereas a DELETE request would delete the entity.

Most of the Resource classes correspond with the
central entities of the application (ProgramResource,
EventResource, LocationResource, etc.), but other
classes also appear, such as the FavouriteResource that
makes it possible to store and query users’ favourite events
and the SocialResource that contains methods enabling
authentication through social networks.

Being used over the HTTP protocol, the RESTful API
should support the HTTP status codes. The Spring Web MVC
defaults to 200 (OK) in the case of success and 500 (Internal
Server Error) in the case of any error or uncaught excep-
tion. This was completed with the 201 (Created), 400 (Bad
Request), 401 (Unauthorized), 403 (Forbidden) and 404 (Not
Found) status codes. To add these error codes the exception
handling mechanism of the Spring Web MVC framework
has been used: it was necessary to declare special exception
classes marked with the ResponseStatus annotation and
to provide the status code corresponding to the exception
as a parameter to the annotation. When an error occurs in
the Resource classes, an aforementioned special exception is
thrown and Spring sets the corresponding error code when
building the answer.

F. Security

Web services usually restrict the access to some of their
resources. In FestivApp’s case secured resources are pub-
lished through a RESTful API, which is based on a state-
less communication model, therefore, security solutions that
maintain this stateless behaviour had to be found. The team
decided to use the Spring Security Framework along with
the OAuth 2 standard [2]. The OAuth2 offers four types of
authorization flows (authorization code, implicit, password,
client credentials) from which the password grant type has



been chosen. This makes it possible to exchange the username
and the password for an access token after authentication.
FestivApp’s server generates JWT tokens (JSON Web Token,
IETF standard [3]). The access token is valid only for a limited
period of time, so when it expires, the client requests a new
one with the help of the refresh token. The latter is received in
the first answer of the server along with the first access token.
HTTPS is used for securing the communication.

IV. THE ANDROID APPLICATION

Android [4] is the most widespread mobile operating sys-
tem, this is why it has been decided to develop the first
FestivApp mobile client for this platform (the development
of an iOS version is also in progress).

A. Data Model

The data model applied within the Android client resembles
the server’s data model. Every class is the descendent of the
AbstractModel. Beside this there is another abstract class
named SynchronizableEntiy. Its enabled field makes
it possible for the client to get notified about the deletions
that occur on server side. If its value is false, then the
corresponding record needs to be deleted from the database.
Every class inherits the id field from the BaseEntity. The
main entities are the Program, the Event, the Category,
the Presenter and the Location. In the Event class a
favourite field can be found, the value of which is set
to true if the event was marked favourite. The Event has
also an asciiTitle attribute that is necessary because of
the search functionality: it ensures that the search does not
depend on letters with accents that may appear in the text.

B. Data Access Layer

In the data access layer the methods connected to data
manipulation are declared in Repository interfaces, and
the implementations are technology specific (OrmLite) beans.
OrmLite is a lightweight framework for the persistence of Java
objects in relational databases [5]. The DatabaseHelper
class has the most important role in the data access layer.
It can be considered a Factory, as its main task is to cre-
ate the DAOs (Data Access Objects) and serve them to
other classes ensuring that only one entity exists of them.
The Repository classes in their constructor request DAO
objects from the DatabaseHelper and in their methods
perform the database operations with their help. DAO classes
may throw SQLException. After logging these exceptions,
a layer specific RepositoryException is thrown toward
the upper layers.

C. The API Client

The Android application connects to the server through the
RESTful API. The network communication happens in the
API Client module. The creation and sending of the API
calls, the reception of answers, along with the parsing of the
request and response messages (from JSON to Java objects
and vice versa) is performed by the Retrofit library [6] and

the OkHttp HTTP client. Retrofit’s main benefit is that the
programmer only has to declare the required methods that
would be translated into API calls in RetrofitApi inter-
faces, since their definition is not required. The ApiManager
class represents the module’s core. Its main task is to
create objects corresponding to the RetrofitApi in-
terfaces (RetrofitProgramApi, RetrofitEventApi,
etc.). When instantiating the RetrofitApi classes, it is
necessary to define a RequestInterceptor, which en-
sures that the access token is set in the header of the re-
quests that require authorization. The ApiManager defines
an Authenticator, too which handles the Unauthorized
error messages by exchanging the refresh token for a new
access token.

D. The Synchronization Mechanism

A program may contain hundreds of events, therefore the
download of the entire program happens only once, when the
program is selected by the user. After that only those entities
are retrieved that were changed after the last synchronization.
In this way, the volume of data to be transported between the
server and the clients is reduced.

The SyncService class holds the synchronization logic.
It is a service that runs in the background and when it calls
the methods of the API client, it passes the date of the last
synchronization as a parameter. When the answer arrives, it
invokes the methods of the data access layer to save the newly
acquired data.

E. The User Interface

The main view of the FestivApp application is the
MainActivity. This contains more fragments, between
these the user can switch with the help of the nav-
igation drawer. The most important fragment is the
PagerFragment that holds more DayFragments, each of
them corresponding to a day in the program of the event.
These can be switched/swiped with the help of a View-
Pager. An important feature of the application is the search
functionality. To implement this, a ContentProvider was
necessary that queries the actual results from the database and
displays them as suggestions. When choosing a suggestion
or pressing the search button, the results are displayed. The
EventActivity contains detailed information about an
event, the LocationDetailsActivity holds the descrip-
tion of a location and a map with the coordinates of the
location pinned on it. This map is a static image, accessible
without Internet connection.

An important element of the application is the list of the
events. Its loading, scrolling and redrawing should happen fast
and smoothly. For accelerating these processes a RecyclerView
[7] has been used. This component recycles the views that
exited the screen during a scroll operation and updates them
with the information that should enter. The dataset could be so
huge that its storing in the memory could reduce performance.
Therefore, it was necessary to implement a cursor-based



adapter that queries data from the database only when it is
indeed needed.

In order to create a user-friendly interface, Google’s Mate-
rial Design Guidelines [8] have been followed. The compo-
nents/elements that are implemented based on the guidelines
include the floating action button (its appearance and be-
haviour), the navigation drawer, the tab layout, the animations,
the colors and the layout. In order to provide an appearance
that corresponds with the selected festival’s brand, the colors
had to be changed dynamically, from code.

F. Dependency Injection

When developing Android applications, an IoC container
is not available, but there are libraries that make dependency
injection possible. Within the FestivApp application the But-
terknife framework is used for injecting UI elements and the
Dagger library for injecting other components (DAO classes,
classes of the API client, etc.).

V. THE WEB INTERFACE

FestivApp’s web interface was written in HTML language,
the handling of dynamic content being done by JavaScript. The
AngularJS framework [9] is responsible for maintaining the
components, for defining the navigation logic and for ensuring
the asynchronous communication with the server. To apply
object oriented approaches, the TypeScript language was used.
The user interface was built using the Bootstrap framework,
which ensures a proper appearance in the majority of browsers
and makes it possible for the web page to easily adapt to
different screen sizes.

The data model of the web module is represented by
TypeScript interfaces and with the exception of some en-
tities and fields it corresponds to the data model of the
server. The entities that store program specific information are
the IProgram, IEvent, IPresenter, ILocation. The
INotification entity represents a push notification, the
IStyle entity contains graphical elements corresponding to
an event’s brand.

The Restangular module is responsible for the communica-
tion with the server and for the processing of the resources. It
sends asynchronous requests, waits for the answers and pro-
cesses the responses, then it sends feedback to the Controller.
The feedback happens through Promises, with the help of
callback functions. The framework is able to automatically
process embedded resources, for example the IStyle entity
is embedded in the IProgram and it is processed without
any further operation.

Some resources of the FestivApp REST API are restricted,
so it was necessary to find a simple solution to authenti-
cate the HTTP requests. This solution was served by the
HTTP interceptors. Every HTTP request is preprocessed by
an interceptor that sets the access token acquired after the
initial authentication in the header of the request. The same
mechanism is responsible for forwarding the user to the login
page if the server’s answer is 401 (Unauthorized).

Fig. 2. Main View Fig. 3. Filter

HTTP requests are stateless, but user specific session infor-
mation has to be stored somewhere. A good solution for this is
the Local Storage introduced in HTML5. The FestivApp web
interface stores here the access token, the id of the selected
program and the state of the menu. The information about the
current state of the view is persisted to be restored after an
eventual logout.

VI. DEVELOPMENT TOOLS AND METHODOLOGIES

The development process of FestivApp followed the Scrum
method and it was facilitated by many popular and efficient
tools. In order to manage the project and to record tasks, the
Trello system was used. For version control the team used
Mercurial while RhodeCode served as a central repository ma-
nagement system. The development of the new functionalities
happened in separate branches that were closed and merged
to the default branch if the pull request was approved.

The Gradle system was used as a build and dependency
management tool. The build process of the web module was
supported by Gulp. Jenkins was used for Continuous Integra-
tion, linked with RhodeCode, Artifactory and the SonarQube
static code analyzer platform.

VII. THE FUNCTIONING OF FESTIVAPP

When launching the Android application for the first time,
one should choose a festival, the program of which would
appear on the screen. After this the main view emerges with
the day by day program (Fig. 2). This could be filtered by
categories or by locations. To access the filter functionality, the
floating button in the bottom right corner should be pressed
(Fig. 3). In order to search one should click the corresponding
icon in the top right corner of the screen. If at least two
characters are entered in the text box, suggestions appear
in a drop-down list. The results of the search appear in a
list, ordered by their start date. To read detailed information
about an event, the corresponding element of the list should be
clicked. If so, a new page appears with the detailed information
about the event. This page contains a button, by which the



Fig. 4. Event View Fig. 5. Navigation Drawer

event can be marked as favourite (Fig. 4). An important
element of the application is the menu (Fig. 5). From here,
one can reach other pages and functionalities. For example,
there is a separate view for the received push notifications
and for the events marked as favourite, but the map of the
event is also accessible and so are the pages that contain
detailed information about the locations and the categories.
To change between programs, the Change program menu item
should be pressed. The web interface can be divided into three
main parts: the menu, from where operations concerning the
program and the mobile application can be reached; the top
bar with the possibility to change between the event programs,
and the main part that shows the content of the selected page.
After signing in, the organizer sees the data of the selected
program. The events, presenters and locations appear in a
table that offers the possibility to filter, order, delete, modify
and insert data (Fig. 6). For every program one can define its
name, its time zone, its start and end date. A map can also be
uploaded, and markers can be placed on it when editing the
locations’ data. Furthermore, the real geographical coordinates
can be defined, too, so the client application could provide
navigation with the help of Google Maps. On the web interface
the selected program’s appearance (colors, logo etc.) can also
be defined.

VIII. CONCLUSIONS AND PLANS FOR THE FUTURE

In accordance with the objectives the team succeeded to
build a general software system that offers the possibility to
manage and browse the program of large events (also without
Internet connection). An efficient synchronization mechanism
emerged, it has been achieved to present the application in the
selected event’s brand/colors, and an API has been developed
that could be used also by external systems if they want to
access data stored in FestivApp’s database.

The application is already published, and helped the par-
ticipants of many events to navigate in the program. From
their feedbacks, reviews and also from discussions with event
organizers many new ideas have arisen, including but not

Fig. 6. Events

limited to: a news feed in the application; weather forecast for
open air events; internationalization of the program, providing
the possibility for the organizers to upload the event program
in different languages; localizing friends within a festival;
carpool functionality; etc.

When developing the mobile application it has been an
important objective to guarantee proper offline functioning.
This is necessary because in the area where a festival takes
place the Internet connection is usually not ensured and the
mobile network may also be overloaded. This is the reason
behind the idea of creating an internal chat, which would be
able to use alternative channels like BlueTooth or WiFi direct
when there is no connection to the Internet.

There exist plans for the further development of the web
interface too. For example, the manual upload is useful if
the data does not already exist on the Internet, but if other
databases or static web pages already contain it, an automated
import would be a better alternative.

REFERENCES

[1] C. Ho, R. Harrop, and C. Schaefer, Pro Spring 3. Apress, 2012.
[2] E. D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749.

[Online]. Available: http://tools.ietf.org/html/rfc6749
[3] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC

7519. [Online]. Available: https://tools.ietf.org/html/rfc7519
[4] Z. Mednieks, L. Dornin, G. B. Meike, and M. Nakamura, Programming

Android, 2nd ed. O’Reilly Media, 2012.
[5] G. Watson, OrmLite - Lightweight Object Relational Mapping (ORM)

Java Package. [Online]. Available: http://ormlite.com/
[6] Retrofit: A type-safe HTTP client for Android and Java. Square.

[Online]. Available: http://square.github.io/retrofit/
[7] RecyclerView. Android API Reference. [Online]. Avail-

able: http://developer.android.com/reference/android/support/v7/widget/
RecyclerView.html

[8] Material Design Guidelines, Google. [Online]. Available: https:
//www.google.com/design/spec/material-design

[9] Angular JS API Reference, Google. [Online]. Available: https:
//docs.angularjs.org/api


