
EKETour - Software Platform for Organizing Tours
Bence Bakó∗, Vivien Emőke Bartha∗, Károly Simon‡, Csaba Sulyok‡ and Levente Kintzel§

∗ Babes, Bolyai University, Cluj-Napoca, Romania
‡ Codespring LLC, Babes, Bolyai University, Cluj-Napoca, Romania

§ Codespring LLC, Cluj-Napoca, Romania
bakobence@yahoo.com

bartha vivien@yahoo.com
simon.karoly@codespring.ro

csaba.sulyok@gmail.com
kintzel.levente@codespring.ro

Abstract—The target audience of the EKETour software sys-
tem is any organization that manages hikes, tours and/or other
outdoor events. The purpose is to create a unified registration
interface for tours. This makes it easier to sign up for returning
hikers, because the general information requires completion only
in the first occurrence of the registration. The interface provides
the possibility for a single user to register the information of
multiple people into several profiles. Hikers receive NFC tags to
validate at checkpoints. Organizers can use a mobile application
to check passers, validate and log their data. The software
is designed and implemented at the request of and based on
requirements from the Transylvanian Carpathia Society (EKE).
The system aims to replace/amend the current personnel on-
paper hiker tracking mechanism with a digital solution.

I. INTRODUCTION

The “Erdélyi Kárpát Egyesület”1 (The Transylvanian
Carpathia Society, abbr. EKE) is a well-known organization
in Transylvania whose main purpose is to regularly organize
hiking and bike tours for interested nature lovers. The tours
can be distinguished in tour versions by its path and distance.
The first version of the EKETour project presents a specialized
software system that suits the requirements posed by the EKE
association. As such, the first intention of the project is to
provide a unified registration platform for the existing tours
directed by the EKE team.

EKETour offers a convenient platform both for the users and
the administrators. Currently, the management of the tours is
elementary: if an interested party for a certain tour completes
the necessary registration steps, they must reiterate the same
steps every subsequent time they wish to take part.

Another factor is the management of the events; the respon-
sibility of the organizers is the manual authentication of the
participants at each specific checkpoint.

There are many difficulties presented by such a system. For
example, the administrator, at the end of the day, summarizes
all the information collected and written down by the organiz-
ers. The risk of misspelled or otherwise incorrect input values
must be considered.

The EKETour project introduces a new solution for this
problem, the card system, which provides a simpler and

1Official website: http://teljesitmenyturak.ekekolozsvar.ro/en

better organization. The participants with the received NFC
cards can walk through the appointed path and they can
authenticate themselves each referee. The point is that, besides
the authentication simultaneously is resolved the tracking of
the hikers, and from the saved and summarized data can be
considered correct and relevant statistics, to be used later to
fine-tune the events.

There have been similar attempts at projects aimed towards
hikers in recent years. For example, Dow et al. [1] present
a project at groups of tourists; when some members get torn
away from the group, they can easily rejoin with the help
of the application. Huang et al. [2] specialize on the Yushan
National Park; their intended audience are hikers who can
easily find the appointed sightseeing spots and pavilions. The
presented works both try to resolve a reoccurring problem: the
localization, navigation and the data collection for tracking the
hikers or tourists. The main requirements share the navigation
on a route with wearable devices. A posed problem is reducing
excessive network communication in such scenarios.

The EKETour shows similarity with the aforementioned
projects in its target audience. The implementation in the cur-
rent case puts emphasis on solving a more complex problem:
the management of multiple tours, a tracking system using
NFC tags, and a multi-profile registration platform.

II. THE EKETOUR PROJECT

A. Background

In this section, the expressions used in the EKETour project
are presented.

The EKE association organizes multiple events each year,
usually dubbed Memorial Endurance Tours; these are ded-
icated to a person well-known in local history. Examples
include the Mór Jókai, Károly Kós and Pál Vasvári Memorial
Endurance Tours.

A tour may cover larger distances, with checkpoints speci-
fied in certain resting places en route. These are named after
the area where they are placed, for example, in the Jókai
Mór tour, there is the Turda Gorge (Tordai-hasadék), Tureni
Gorge (Túri-hasadék), Adventure Park, etc. The participants
are awaited at each checkpoint by the organizers, also known
referees. They validate and record the data of the arrived



Server

API

«Module» 
Model

«Module» 
Repository

«Module» 
Service

«Module» 
Assembler

«Module» 
Resource

Backend

AndroidClient

«Module» 
Model

«Module» 
API

«Module» 
Controller 

«Module» 
Assembler 

«Module» 
View

«Module» 
Repository

WebClient

«Module» 
Model

«Module» 
Service

«Module» 
View

«Module» 
Controller

UI

Common

«Module» 
DTO

Fig. 1. Architecture of the EKETour project.

participants and guide them to the next checkpoint. The tour
has one or more tour versions, which are different from
each other by type (hike or bicycle), route, length, start and
endpoint.

B. Functionalities

The EKETour project uses of a centralized server, which
serves two types of clients: an Android mobile app and a web
client. The web interface may be used by three types of users:
guest, authenticated user and administrator. Each of them are
given access to different functionalities. The target audience of
the Android app introduces a fourth user type: the organizer.
Currently, the mobile app may only be used by organizers.

The web user interface provides functionalities both for
the administrator and the simple user. An administrator has
the privilege to visualize the users and the profiles related to
them. He/she can create tours by defining a label, a general
description and a date. After that, it can be assigned multiple
trip versions, which differ from each other by path, the type,
the starting and the finish points. He/she then determines a
registration fee in multiple currencies for each version.

An authenticated user may create user profiles. A profile
contains required information, such as T-shirt size, EKE mem-
bership or the name of the organization and dining preferences
(e.g. vegetarian). In the interest of a well organized event, this
information is required in advance and later on used for each
registration, eliminating monotone form completing.

A possible arising situation is that a younger participant (e.g.
child accompanied by a parent or guardian) does not possess
either a phone number or an e-mail address, but by means

of the profile system, the parents can easily record their in-
formation, then achieving the registration for the suitable tour
version. The user processes this registration with the profiles
one by one to any of the available tours, therefore every profile
is connected to the most suitable tour version independent
from the user. Another possibly beneficial scenario of the
profile system is a company representative (e.g. secretary,
organizer) registering the employees in bulk. Everyone selects
a suitable tour version for themselves and later on the collected
registration fees are payed by the company collectively.

The authentication and the logging/tracking of the partici-
pants is resolved in the Android application. The content of
the application is internationalized; the loaded pages adapt
the default language of the device. After this, the system
synchronizes the data with the server and visualizes the
available tours. By selecting the current tour where the user has
an organizer position, the application provides the possibility
to pair a participant with an NFC card and a unique number.
During the trip, the participants who pass a checkpoint are
authenticated by reading the NFC card with the application,
afterwards this information is saved into the local storage. If a
network connection is available, the system synchronizes the
new logs with the server.

C. Architecture

The EKETour project is separated into three main compo-
nents: the server, the Android mobile application and the web
application. Both the server and Android use a database. If
there is a network connection present, the Android application
synchronizes its data with the server, allowing usage even
without a working Internet connection. Figure 1 shows a fourth



AbstractModel

+ uuid: String

BaseEntity

+ id: Long

User

- email: String

- phone: String

- password: String

- token: String

- expiryDate: Date

- preferredLanguage: String

UserProfile

- firstName: String 

- lastName: String

- email: String

- phone: String

- cnp: String

- birthday: Date

- vegetarian: Boolean

Organization

- name:String

- type: String

<<Enum>> 
Size

+ XS 
+ S
+ M
+ L
+ XL
+ XXL

<<Enum>> 
Gender

+ MAN 
+ WOMAN 

<<Enum>> 
Role

+ ADMIN 
+ USER 

Fig. 2. Partial representation of the data model. Besides the generalization of entities, the one-to-many relationship between the User and UserProfile
entities/tables are presented.

component as well: the common module, which contains the
Data Transfer Object (DTO) implementation. The connection
between the other three components is realized via this one,
providing a uniform model representation with possible un-
dercover data fractions, like passwords or IDs.

The server component consists of two subcomponents: the
Backend and the API. The Backend contains the Model
module: a collection of the entities. The Repository model
implements the database related operations. It uses the MySQL
relational database, with connections established via the Java
Persistence API (JPA). The Service module handles the busi-
ness logic of the server, requesting the Repository package
where necessary.

The API subcomponent provides a RESTful web service
for the clients, allowing HTTP requests. In the API subcom-
ponent, the Assembler module performs conversions between
the Backend’s Model and DTOs. The Controller module
responsibility is to forward the request to the Service layer.
The received answers are processed by the Assembler, where
the data is converted into DTOs, which are serialized and sent
back to the client.

The web client is separated into four modules. The Model
module contains the entity representations. The Service mod-
ule implements the communication with the server; this layer
requests necessary information from the RESTful API of the
server. The Controller manages the View and it uses the func-
tionalities of the Service. The Controller communicates with
the Service with an Observable data stream, by subscribing to
the Service methods.

The Android client contains six modules. The Model rep-
resents the entities of the application. The Repository mod-
ule implements the communication with the local SQLite
database. The Controller processes the events generated on
the View. The API module handles the communication with
the server’s RESTful API.

D. Data model

The entities of the EKETour system are represented as Java
Beans with corresponding Java Persistence API annotations.

The entities possess private properties, which can be accessed
by the public getter and setter methods that follow a naming
convention, respectively have a no-argument constructor.

The AbstractModel class, which implements the
Serializable interface by having a universally unique
identity property, provides the possibility to easily distinguish
the objects created in the system. The BaseEntity class
extends it with another id property, which functions as a per-
entity unique identifier.

The descendant classes use the corresponding JPA annota-
tions to create their schema; with this, each class is mapped
with the corresponding table from the database. Some entities
are considered secondary information collections or have only
one referrer, therefore mapping them to a table becomes
unnecessary. These entities are embedded into the table of
referrer. These classes are similar to the entity ones: they
extend directly the Serializable interface but do not
contain the id property.

The User data model represents authenticated users. Its
shell contains some specific properties like the one which
stores the lastly chosen language on the web interface, by this
attribute the system handles in which language the content
must be displayed. In the other hand, there is a token and a
set expiry date property pair, which maintain the possibility to
change the forgotten password.

The UserProfile entity stores the personal information
about a person: full name, phone number, email, CNP2,
birthday. Furthermore, the name and type of an affiliated
organization may be defined, as well as information about the
required T-shirt: the size and the type (sewing). For security
reasons, the User entity contains a property (UserType)
which defines their role, taking on predefined values from an
enum.

III. TECHNOLOGIES

A. Server
The EKETour server program is built using the Spring

lightweight framework, which is based on the Inversion of

2Cod Numeric Personal, regional equivalent of a Social Security Number



Control[3] (IoC) design principle. IoC manages the life cycle
of the components and resolves the dependencies between
them automatically on runtime, by applying the Dependency
Injection pattern. The scope of the IoC container is to manage
objects from a particular class, configure, assemble them by
reading the configuration metadata (in this case, the Java
annotations).

Spring Boot[4] aids the creation of the EKETour server-side
project. It provides predefined configurations that are common
for certain project types. Based on the provided dependency
packages, it inserts particular modules into the application.

The Spring Data[5] dependency provides the possibility to
switch between different technologies that provide access to
different types of databases. By abstracting the methods, it
significantly reduces the amount of repeated code required to
implement data access. In the EKETour project, the Spring
Data JPA module is used, which creates a higher abstraction
layer on top of the Hibernate ORM (Object Relational Map-
ping) framework.

The JPA module supports defining a query manually or
creating it dynamically based on the method name. Most of
the time the second strategy is used, but in some cases the
solution is to annotate the query method with @Query. The
value of the annotation is the query defined in JPQL language.

The applied communication in the EKETour project is
based on the REST software architecture and is realized by a
RESTful web service, namely the Spring Web MVC module.
This module provides serialization and deserialization of all
payloads in JSON format.

The client applications can indirectly access or modify the
resources provided by the server, depending on which HTTP
method (POST, GET, PUT, DELETE) and Unified Resource
Identifier is used in the particular request.

To secure the aforementioned communication, the server
uses the Spring Security framework, which provides a re-
striction for URL accessibility affected by the particular role.
For example, paths starting with the admin-specific prefix
can be accessed only with administrator privileges. Password
encryption with BCrypt is applied for system security.

B. Web

The web interface of the EKETour project is a single-page
application, provided as static files served by the server. The
application is developed in the Angular 4 frontend framework
[6]. Its primary language is TypeScript, which is a strict
superset of the ECMAScript 6, which, along with event-
driven, functional and prototype programing styles provided
by the JavaScript, also supports object-oriented programing
paradigms.

The architecture of the Angular framework is characterized
by a component hierarchy, supports many design patterns, like
reactive programing, unidirectional data flow and centralized
state management. In the project, the MVC design pattern was
applied.

For handling the asynchronous events, the Observable data
stream is used, which is implemented in RxJS. Therefore the

unidirectional data flow is also implied, which is fulfilled by
the following steps: on the view an action is triggered, by this
action the state of the application changes which modifies the
certain view.

The Angular client application consumes the Spring MVC-
based RESTful web service. This communication is realized
with the HttpClient[7] technology. This uses the well-known
XMLHttpRequest browser API for the HTTP request execu-
tion. It is possible to directly access the JSON response by
subscribing to the aforementioned Observable which is the
return value from the certainly executed method.

The web user interface obtains a pleasing view by using the
Material Design framework. Material is an adaptable system
of guidelines, components and tools. The internationalization
(i18n) library used by the Angular provides the translation of
the web page’s content.

C. Android

The EKETour Android application entities are represented
as Java Beans, with the corresponding OrmLite[8] annotations,
showing similarities to the server-side model both in terms of
structure and hierarchy.

In the EKETour mobile application, communication with
the server is implemented through RESTful services, using
the Retrofit package. For operations requiring network access,
the data is synchronized: the data retrieved from the server
will also be saved in the database of the mobile device.

The data models include a modification date field, so the ap-
plication only requests data altered since the last modification
date from the server.

The android.nfc package contains an NfcAdapter class,
which gives the possibility to make a connection with the
NFC[9] sensor.

IV. TOOLS AND METHODOLOGIES

The development phase of the project employs the Scrum
iterative and incremental framework. Efficient teamwork is a
principal intent, therefore the Git version control system[10]
is used, with older project versions simply available for
restoration and comparison. The development phase uses git
flow: for each functionality, a new branch is created, and if one
of them is reviewed and is considered finished, the changes
can be merged into the stable development branch.

GitLab is a project management tool by providing a Kanban
Board where the progress of the project can be traced, is a
repository management system, therefore it provides solution
for storing the source code and the pipeline system, which
also realizes the Continuous Integration process. A pipeline is
built up from different jobs, which are grouped into stages.
The defined jobs separate the code analysis from the building
phase and from the test phase. When a change is pushed into
the main repository, the CI system first builds the application
and then runs the automatic tests. The developers are notified
by the system if either stage fails.

During the development, the Java source code quality as-
surance is assisted by two static code analyzers: FindBugs and



Fig. 3. Home page

Checkstyle. For TypeScript, code conventions are ensured us-
ing the TSLint static code analyzer. The individual methods in
the Java source code are unit tested with the JUnit framework.
Furthermore, integration tests are provided with the Arquillian
framework to examine the communication and connection
between components. The Android application is also tested
with an automation testing tool, namely the Espresso UI tester.

Gradle compiles the Android application and the server
module, and automatically retrieves dependencies. In the case
of the web module, npm (node package manager) resolves the
compilation, building and front-end dependency management.

V. THE USAGE OF THE EKETOUR PROJECT

A. Web interface

The users can use the web application to access the software
system functionalities. The default language of the web appli-
cation is Hungarian, but it can be changed by selecting the
flag icon in the header of the web page, as seen in Figure 3.

In the menu, the guest users can check the registered tours
and the information connected to the activities: description,
date, tour versions, registration fees, start and finish points. In
order to access other functionalities, the users have to log in
or register into the system, providing their e-mail addresses
and phone numbers.

The authenticated user can create a new profile. This con-
tains some information that is required for tour registration,
like T-shirt size, membership of EKE community and meal
preferences. A user has the opportunity to create more than one
profile; they can add family members, friends or colleagues.

The users can browse the available programs under the Tour
menu point. Here, all tour versions related to the chosen tour
are shown. The user performs the registration for a tour with
one of their profiles by selecting the most suitable version.

The users with administrator privileges can access more
functionalities, such as listing the information of other users,
managing the tours and tour versions, etc.

Under the Add new tour menu the administrators can create
new tours. The created ones can be listed under the Tour menu

Fig. 4. Page view after selecting a tour.

point. The administrator user manages the information con-
nected to a selected tour: the available versions, checkpoints,
statistics and progress logs.

The administrator is able to define registration fees for a
selected tour version. This can be done by clicking the $
icon in the respective row. The registration fee is specified
in different currencies (currently RON, HUF and EUR), since
the tours are addressed to an international audience.

The administrator user can set checkpoints connected to
the tours by providing a meaningful name and the time
interval(s) they are open. These checkpoints are listed under
the Checkpoints menu in the tour settings page.

Under the Tours statistics page, the administrator can create
tabulations where the statistics are listed. For example, they
can request the number of participants who ordered T-shirts,
and from which types.

Under the Progress Log menu, the progress of the partici-
pants is listed: which user passes a given checkpoint and the
time of event occurrence. The progress logs can be filtered by
participant.

B. Android client

The Android application is mainly designed for organizers
and referees. To use the app, the designated smartphone must
support the reading and writing of NFC tags.

The referee automatically receives the necessary informa-
tion from the server by opening the app: the organized tours
and the lists of participants. They can also request synchro-
nization manually by tapping the menu icon, then selecting
the Sync option from the appeared list. Afterwards they can
choose the tour they are involved in as organizer from the
list of tours. There are two options available on the displayed
surface, as shown in Figure 5.

The organizer selects the first option (Pair with NFC) at a
starting point, where their task is to register the arriving hikers
to that specific tour. They search the participant from the list
by name, insert the previously assigned sequence number into
the blank field, after which they pair an NFC tag with the
participant by moving it close to the phone (see Figure 6).



Fig. 5. After selecting a tour Fig. 6. Pairing NFC with a participant Fig. 7. NFC authentication

Clicking the Submit button the pairing is uploaded to the
server.

The organizers waiting at the next checkpoints are re-
sponsible for identifying the passing participants. The second
option(Checkpoint button) provides the opportunity for this,
which displays all the checkpoints on the tour route. The orga-
nizer selects the checkpoint representative of his/her location
and starts logging the passing hikers. Approaching an NFC
tag prompts (see Figure 7) the display to show the name and
the received sequence number. By tapping the Log button the
data is validated, then by selecting the Sync with server button,
the synchronization process will start, which sends the locally
saved logs to the server, if there is a network connection.

VI. CONCLUSIONS AND FURTHER DEVELOPMENT PLANS

The EKETour software program successfully provides a
unified platform for the management and registration of
hikes/tours, facilitating the tasks of both the organizers and the
participants. The Android application provides the opportunity
to register hikers by pairing them with NFC cards, to identify
them and to log information about the performed operations. In
the web user interface, the administrator can create tours, ver-
sion of the respective tours and checkpoints. The administrator
is able to set participation fees for every tour version, is able
to view reports about the completed tours, for example, the
requested T-shirts or the progress of participants at a specific
tour.

As a further development, snapping and storing profile
pictures for all participants at the starting point could help
identify them. The referees would be able to check the pictures
at checkpoints by reading just an NFC tag.

Because the tours can take a longer time, finding a hotel or
a means of transportation back home may be a problem for
some participants. As further development, transportation and
accommodation options could be introduced into the system,
the preferences of which could be provided by participants
upon registration, similarly to the ordering T-shirts.

The online payment of the tour fee would simplify the work
of the organizers. The fees for the tours could also vary for
different age groups, after reaching tour deadlines or based
on other discounts. Adding these rules to the system, the
participants could also pay the registration fee over an online
bank transfer immediately after the registration.

As another planned extension, displaying the checkpoints
on a dynamic map would show the route of the tour. In case
of multiple tour versions, users could easily see the difference
between routes. For the referees, it would possible to validate
a checkpoint by GPS tracked location of the smart phone.

REFERENCES

[1] C.-R. Dow, Y.-Y. Chang, C.-W. Chen, and P.-Y. Lai, “A mobile group
tour tracking and gathering system,” in Information Technology: New
Generations, S. Latifi, Ed. Cham: Springer International Publishing,
2016, pp. 293–302.

[2] Y. T. Huang, Y. C. Chen, J. H. Huang, L. J. Chen, and P. Huang,
“Yushannet: A delay-tolerant wireless sensor network for hiker tracking
in yushan national park,” in 2009 Tenth International Conference on
Mobile Data Management: Systems, Services and Middleware, May
2009, pp. 379–380.

[3] K. D. Rod Johnson, Juergen Hoeller. Spring framework reference doc-
umentation, part iii. core technologies. [Online]. Available: https://docs.
spring.io/spring/docs/3.0.x/spring-framework-reference/html/beans.html

[4] J. L. Phillip Webb, Dave Syer. Spring boot reference guide. [Online].
Available: https://docs.spring.io/spring-boot/docs/current-SNAPSHOT/
reference/htmlsingle/

[5] Spring data jpa - reference documentation. [Online]. Available:
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/

[6] Y. Lasorsa. The missing introduction to angular and modern design
patterns. [Online]. Available: https://bit.ly/2rSB29O

[7] S. Kryvets. Simply about new httpclient in angu-
lar. [Online]. Available: https://sergeome.com/blog/2017/11/26/
simply-about-new-httpclient-in-angular/

[8] G. Watson. Ormlite - lightweight object relational mapping (orm) java
package. [Online]. Available: http://ormlite.com

[9] Android nfc. [Online]. Available: https://developer.android.com/
reference/android/nfc/package-summary

[10] V. Driessen. A successful git branching model. [Online]. Available:
http://nvie.com/posts/a-successful-git-branching-model/


