
Mobile Application for Daily Challenge
Management

Mátyás Gagyi
Babes-Bolyai University
Cluj-Napoca, Romania

reloflex@outlook.hu

Örs-Krisztián Patakfalvi
Babes-Bolyai University
Cluj-Napoca, Romania

p.krisztian@outlook.com

Sándor Ráduly
Codespring

Cluj-Napoca, Romania
raduly.sandor@codespring.ro

Csaba Sulyok
Babes-Bolyai University
Cluj-Napoca, Romania

csaba.sulyok@gmail.com

Abstract—Nowadays, the various challenges in which partici-
pants have to take certain time-specific steps are growing more
and more popular; examples include reading a book every week
or doing specific exercises for thirty days. Although enthusiasts
are eager and willing to participate, they lack a single and
transparent platform.

The Daily Challenge software project aims to provide a unified
interface for users where a multitude of challenges are available
for participation.

The project is divided into three components: The central
server raises a scalable platform around our database and
provides access options for any number of clients. Through
the multi-platform native mobile application and the web-based
interface, users with different roles may participate and maintain
challenges.

This paper provides an in-depth view of the operation, archi-
tecture and the functionalities of the system, also fleshing out
technologies and tools used.

I. INTRODUCTION

Recent years has seen a rise in challenges spreading through
social media. Users take hard interest in such pursuits but
usually find themselves struggling to find a structure therein.
The Internet is full of training, photography and reading
challenges, but the professionally made challenges tend to get
lost in the mass of low quality ones. A need for a unified
and transparent platform is emerging; to find challenges, track
performance and read reviews or even encourage others to
participate.

The Daily Challenge application is intended to serve as a
challenge-based social platform in the everyday lives of its
audience. Its primary goal is to provide a unified interface
for its users, where all of the challenges are available for
participation in one place.

The project can be divided into three main components. The
central server raises a scalable platform around the database
and provides access options for any number of clients. The
native mobile application, which is available on iOS and An-
droid devices, gives users the opportunity to find, follow, join
and complete new challenges. The web application provides
content managers insight into the user-recommended challenge
ideas, allowing them to review, reject or publish challenges.
Administrators may also control the activities and roles of
users through the web interface.

The remainder of the document is structured as follows:
Section II presents the functionalities, broken down by user

rights. The general user options within the mobile application,
as well as the rights of the content managers and administrators
are described. In Section III, the project’s architecture is ex-
plored, broken down into server, mobile and web components.
Section IV contains the technologies and tools utilized during
the development process. Section V explains in detail the
operation of the mobile application and the web interface,
providing an illustrative guide through the possibilities pre-
sented to users. Finally, Section VI contains the conclusions
and plans for the future extensions and betterments of the
Daily Challenge project.

II. FUNCTIONALITIES

The main goal of the Daily Challenge project is to globally
expose a unified platform of a multitude of challenges, so the
users can easily access them in a convenient and unified place.
Core functionalities of the project manipulate critical and often
sensitive data, such as editing the published challenges or
suspending users, prompting the need for different roles, which
can inherit rights from each other. The current roles include:

• The standard user can only log in to the mobile applica-
tion and use all of its functionalities.

• The content manager can also log in to the web applica-
tion and access part of the administration functionalities
related to the challenges.

• The administrator has the most rights; they can access
every functionalities of the project.

A. Functionalities of the standard user

After successful download of the mobile application, a
standard user is given the opportunity to log in with their
Facebook account. All subsequent mobile functionalities are
approved upon login.

The user can view the challenges in which he/she is cur-
rently participating in a dashboard-like view, where necessary
next steps attributed to these challenges are also shown. They
can also view the overview of steps, where they will find
information about the current step. The user can move forward
or backward between steps and get accurate descriptions and
instructions about the previous or following steps. Steps may
be marked as completed, prompting the user to move forward
towards achieving a full challenge. After the user finishes
a challenge, the application congratulates them and shows



Server side

Validators Models

ControllersRoutes

Web application

Config

Stores 

Stateless 
Components 

Stateful 
Components 

Containers

Services 

Mobile application

Components

Models

Screens 

Services 

Stores Config 

Fig. 1. The components of the system and their relationships.

progress information such as the completion time. Besides
that, it provides an opportunity to share the results through
other applications.

The published challenges can be browsed with the applica-
tion. The challenges appears in a searchable list, with a few
details like name, image and rating. The user can view the
full details of a challenge, join or leave it and also mark it as
favorite.

Some global settings of the application are customizable
by the user. The address of the server can be changed,
which besides testing benefits, ensures the correct operation
of the application even after a server migration. The level of
notifications can be customized as well, so the user can adjust
what kind of notifications they would like to receive.

There is a way to propose challenges towards to the con-
tent managers. Users can suggest a base idea with a short
description or even concrete steps and step descriptions. These
submitted suggestions will appear in a list grouped by their
progress. In initial states, they are still editable and deletable
by the suggester.

Every user can view their own profile, the list of the com-
pleted challenges and the global leaderboard. The leaderboard
contains the top 100 users ranked by their score, also injecting
the same information about the current user, providing a
comparative look.

After usage, the user can also log out from the application.
Upon decision, they may also suspend or even delete their
own account, prompting a full deletion of their data from the
server/database.

B. Functionalities of the content manager

A user with content manager privileges inherits the rights
of the simple authenticated user, and in addition they may also
log in into the web application.

Android client

iOS client

Web client

API server

Mongoose

MongoDB

Proxy

Web server

REST

REST

HTTP request

REST

forwarded REST 
requests 

Static files for web

Fig. 2. Communication diagram, which presents that data flow between the
different clients and components.

Here, the suggested and the published challenges can be
listed, and various management operations can be carried out
related to them. The content manager can view the published
challenges and modify certain parts of them. The suggestions
appear in another list, where the content managers can edit
and supplement them. If a challenge is ready and reviewed,
they can publish it, making it available globally.

C. Functionalities of the administrator

The administrators once again extend the permission base of
content managers; in addition they may perform such critical
operations that affects other users too. These include listing
users, granting/revoking certain rights/privileges from users,
etc.

III. ARCHITECTURE

The system consists of three main components (see Fig.
1). The mobile application and the web interface are both
served by the the central server. Each main package follows
the principles of multilayer architecture [4], creating a modular
and maintainable system.

The clients and components communicate with each other
as presented in Fig. 2. Each client sends all types of requests
to the Web server from which REST requests are forwarded
to the API server. Static web resource requests are served
by the Web server directly. To accomplish this, a Proxy is
used, which can decide based on the pattern of the incoming
URLs, whether or not it needs to be forwarded. The API server
communicates with the database in the interest of serving the
RESTful request.

A. The server component

In the case of the server, the requests are sent to the routes
layer, which decodes and forwards them to the validator layer,
where certain validations related to requests are executed.
These may include authorization checks, request parameter
validation etc. If the request is appropriate and feasible, the
controllers component will perform the necessary business
logic, appealing when necessary to the data schemas defined
in the models layer.

The data is stored in a document-based NoSql database. The
models component of the server side defines the schemas that
entities must follow. There are three separate collections of
Challenges, Users and Leaderboard as well as two additional



Challenges

 _id: ObjectId 
 name: String 
 creation_date: Date 
 image: String 
 description: String 
 number_of_ratings: Number 
 number_of_participants: Number 
 number_of_steps: Number 
 category: String 
 rating: Number 

Steps

 _id: ObjectId 
 title: String 
 description: String 
 completion_value: Number 

steps
1

0..*

Users

 _id: ObjectId 
 facebook_id: Number 
 facebook_name: String 
 facebook_picture_thumbnail: String 
 facebook_picture_large: String 
 creation_date: Date 
 last_login: Date 
 overall_score: Number 
 ranking: Number 

1
favorites

0..*

1
suggestions

0..*

ChallengeProgress

 _id: ObjectId 
 progress: Number 
 started: Date 
 last_progress: Date 
 progress_score: Number 

1challenge_id

1

challenges

1

0..*

1
creator_id

0,1

<<enumeration>>

ChallengeStatus

suggested
rejected
accepted
published 

status

1

1

<<enumeration>>

ChallengeScale

day
week
monthscale

1

1

<<enumeration>>

UserRole

user 
content_manager

admin
role

1

1

<<enumeration>>

ChallengeProgressStatus

active
done

status

1

1

Leaderboard 

 _id: ObjectId 
 facebook_name: String 
 facebook_picture: String 
 score: Number 
 ranking: Number 

1
user_id

1

Fig. 3. The schema of the collections and nested collections in the system, and the used enum types.

schemas, Steps and ChallengeProgress embedded in other
fields of the collection (see Fig. 3).

In the Users collection, the users who have logged in
at least once with their Facebook account are stored. The
data from Facebook, such as ID, name and image, are also
cached for easier access. The Challenges collection includes
the challenges accessible by everyone, and the challenge
suggestions with certain statuses (suggested, rejected, accepted
or published). Only the challenges with published status are
available to all users. In addition, there are several things
stored in the challenges: their name, description, creation
time, image, number of evaluators, participants and steps,
category, cumulative evaluation, identifier, steps and scale,
which can be days, weeks, and months. The steps include an
embedded block, which contains the data defined according
to the Steps schema. Each step has a title, description, and
an amount of points that users can receive for completing it.
The Leaderboard collection caches the most important data
of the users who have the highest score. The content of this
collection is automatically updated at certain intervals, when
the system recalculates performance, taking into account the
total number of users.

The API server communicates with the MongoDB Satheesh,
D’mello, and Krol [7] database using the Mongoose ODM [5]
(Object Document Mapping) framework. Mongoose provides
the opportunity to perform operations on the server with
objects representative of the expected data format. Mongoose
models also help manage and monitor challenges and user
data. To keep the request and response message sizes within a
reasonable limit and to avoid unnecessary memory usage, the

paginate feature of Mongoose is utilized.
The login process consists of several steps performed in

the background. As a first step, a request is sent to the
Facebook server from the client, to request a valid access
token for a specific time period. Using the acquired key, the
client application retrieves user-related data (ID, name, image).
Afterwards, the client sends a request to the API server with
this data and the access token. Upon receipt of the request, the
server will validate the Facebook ID and the access token using
the appropriate authentication API endpoint. If everything is
correct, the user gains entry into the application and all its
relevant API endpoints. As a final step, the server sends back
the ID, allowing the user to access their own data.

In case of a valid session, the server verifies whether the
user has the right to perform a requested action based on their
role. This is done by a proprietary role based access control
(RBAC) system. For each role, associated actions its users
may perform are mapped. Based on this, the RBAC system
builds up a roleMap and performs the necessary authorization
at every operation.

The API server created under the Daily Challenge project
respects RESTful standards when serving any potential client.
A primary access endpoint for the API is /challenges, which
addresses the challenges. The provided methods include read-
ing type methods, such as listing challenges, searching, filter-
ing. It also allows suggestion submission and updates.

To manage any single challenge, the / chal-
lenges/:challengeID endpoint format is provided. Its
sub-endpoint /challenges/:challengeID/steps allows clients to
access different steps for each challenge. Just like challenges,



the /:stepID can be used to specify the step to accomplish.
Managing users is accomplished through the /users endpoint

and its extensions. Both logging in and out are facilitated
through here. By adding the appropriate userID, clients can
access detailed data of other users using /users/:userID. Chal-
lenge management assigned to certain users is also available
through the /user/:userID/challenges/:challengeID endpoint.

B. The mobile client

React Native [2] allows you to create component-based
views. One component represent an elementary part of the
user interface, such as a button or an input field. These can be
customized, recycled and embedded. React also ensures the
smooth operation of the interface, recognize which elements
should be re-drawn according to data changes and updates
only those parts.

In the application everything is made of React components
and extensions of these. To enhance the user experience and
facilitate our work we decided to use a UI toolkit, called
Native Base. Thereby besides the basic React Native com-
ponents (View, Text, etc.) we got many new useful element.
Customizing their appearance, position, and size is done by
using style sheets (StyleSheet), which are similar to CSS.

A package, called React Navigation is responsible for the
navigation between the screens in the application. It provides
several ways to implement the changing between views, using
stacked, tab or switch navigators.

The presentation layer includes three components in the
mobile application: screens, components and stores (Fig. 1).
The first two are responsible for the view and the third are the
model and the controller at the same time.

The screens contains the complex views that the user see in
the application. These views shows the data provided by the
models and interacts with the user through buttons or other
elements. The components contain complex stateless elements
which are used multiple times on the screens.

The separation of the presentation layer from the model and
controller is established by using the MobX [6] state manage-
ment system. With this we could associate each view with an
element called Store. These deal with the data displayed on
the screen, react to changes by updating the views, manipulate
data and communicate with the central server. The store and
screen elements use annotations to achieving this.

The business logic layer includes two component: the model
where the data models are defined, and the services, in which
the server requests are defined. The presentation layer is
separated from the business logic, the stores do not contains
direct requests to the server, only instances of the necessary
classes from the service component.

If the response from the server is all right, then data integrity
checks will be performed based on the schemas in the model.
If the data structure is OK, then the information from the body
will be returned in JSON format. If the response to the request
is not correct, then a proper Error object will be throwed, what
will be catched and handled by the upper layers.

The application communicates with the server through
REST requests. For the communication we used the Fetch
API provided by Mozilla, which allows sending asynchronous
network requests and receiving answers for them. The answer
for the request is a Promise, which makes it easy to handle
and process these responses.

C. The web client

When the user first opens the web application, the browser
loads the JavaScript bundle built by Webpack allowing the
page to be displayed. The architecture of the web page is
almost the same as the mobile application’s architecture pre-
sented before. Hereinafter, only the most important differences
are highlighted.

All the necessary code, such as JavaScript, HTML or CSS,
are uploaded to the user’s browser, when the page first appears,
and the data is dynamically loaded only when needed.

Using the Bootstrap features, the display of our web appli-
cation is optimized for each screen type. When viewed on a
large display, an on-screen side menu is located on the left side
of the webpage. In addition, a full-length header ensures that
the user can always see on which main page is he watching.
With a reduced screen size, the overview of the challenges and
users changes, showing fewer columns depending on the size.
If the size is lowered below the mobile look, the side menu
turns into a collapsible menu on the left.

The interface accessible for the users consists of stateless
and stateful components. The stateless components do not
contain dynamical data and do not have status. The stateful
components, on the other hand, are connected to a MobX state
manager class, so they are directly related to the business logic.
Through these components, the website responds to internal
changes and user activity.

The web application can be divided into two parts, sym-
bolized by two containers. The first contains the Home page,
which is a public static page. The other one is the Admin page,
where a user can enter only with appropriate rights.

IV. TECHNOLOGIES

The project is developed using appropriate current technolo-
gies. In this chapter, the main technologies and tools were used
during development are presented.

For the back-end server, Node.js [1] is used. The main rea-
son for the decision is JavaScript acting as a shared language
between front-end and back-end. Express.js [1] handles the
HTTP and API requests. Because of the varied structure of
the data, the persistence is realized with the MongoDB [7]
NoSQL database. The Mongoose ODM [5] provides a flexible
but powerful bridge between the server and the database.

The user interface is built using React [3] for the web, and
React Native [2] for the mobile client. The choice for the
React family lies in the reusable JSX and HTML components.
React Native compiles into native code and therefore provides
native look and feel on different mobile operating systems.
Webpack is used as a static bundle maker, for assembling all
scripts, styles, assets and dependencies for the web application



Fig. 4. View of the active challenges Fig. 5. View of the active challenge’s
steps and their descriptions.

into one static distributable asset. MobX [6] is used as a state
management system on both clients, chosen because of its
simplicity and efficiency. As a user interface toolkit, Bootstrap
is used for the web client and Native Base in used for the
mobile application.

Several auxiliary tools also played significant roles in the
development process. For example, Expo is a toolchain built
for React Native, which helps to build a native iOS or
Android project and provides a rich SDK with useful tools.
GitLab is utilized for version control, project management and
continuous integration. Automatic deployment to a staging
server are also integrated into a full continuous deployment
pipeline. Quality assurance is achieved using ESLint for static
code analysis, as well as Mocha, Chai and Jest for testing.

V. THE CLIENT APPLICATIONS

This chapter presents the usage of the mobile application
and the web interface, as well as the use of more relevant fea-
tures, with a brief description and screenshots from different
situations.

A. Mobile application

After opening the application the user is greeted by the login
screen. There a series of images provide insights into some of
the functionality of the application. Below is a button to sign
in with Facebook. After a successful login, a view of active
challenges is displayed. At first login, the user does not have
any challenges, so the application recommends joining one.

There are two tabs at the bottom of the screen, the first one
covers the overview of the user’s active challenges (Fig. 4), the
other leads to the list of available challenges. The second tab

shows the public challenges available on the server. The user
can search for specific challenges by typing in the search bar at
the top of the screen. After entering some characters, search is
started and only those challenges that have the requested text
in the title or description are displayed. By clicking on any
item the user can view the details of the selected challenge
on a new screen (Fig. 6). There’s a more detailed description
to read, the steps can be seen with other useful information
about the challenge.

If the user has joined at least one challenge, they will
be displayed in the above-mentioned active challenges view.
Clicking on any of the items will provide a detailed description
and instructions about the step in progress (Fig. 5). The
information on the Completed button shows the selected
step’s status. If he is looking at the right step, he’ll also
get information about the possible time of the completion.
If the user completes the last step of the challenge, he’ll see a
congratulatory view with data about his activity. There is also
the ability to share performance through social networks or
other services.

Within the application, the sidebar can be used for navigat-
ing between the different major units. The views and func-
tionalities described in the paragraphs above can be accessed
through the Home menu item. There are also three additional
menu items and a Logout button that can be used to log
out of the application. The Settings item collects available
application settings in a list. The following menu item is
named Suggestions, here the user can submit a new challenge
idea for the content managers. Opening the menu, the user
can see his ideas, that have been suggested before. Ideas are
grouped according to their status, which can be one of four
types: Suggested, Accepted, Rejected or Published.

The user can click on the ideas in the list to view the
details and see the options for editing or deleting them. In
addition to this, challenges appearing in the published state
will also have a button, which will immediately lead to the
details of the published challenge, where the user can join
them immediately.

In the sidebar, the last menu is named Profile and it
navigates to the user’s profile where the image, name, and
total score of the user can be seen (Fig. 7). Below we can
find three buttons which navigate to the Leaderboard view,
access completed challenges and show achievements added in
the future.

B. Web application

The main features of our web application can only be
accessed by users with roles of Content Manager or Admin-
istrator, but anyone can view the main page where a brief
description of the app, the contact of a developer team, and
the mobile application’s download options are displayed. From
here, the user can log in and proceed with Facebook. If the
user has a Content Manager or Administrator permission, the
Control Panel will be displayed after login, if not he will be
returned to the Home page.



Fig. 6. The details of a selected
challenge Fig. 7. Te profile of the user

Fig. 8. Overview of the available challenges

On the Control Panel, users have the option to view and
manage the challenges (Fig. 8). Selecting the Suggestions tab
in the side menu allows to review submitted suggestions. By
clicking on a proposal, its data is displayed on an editorial
interface where changes can be made to the recommendation,
or even be published as a full-featured challenge.

Users with Administrator role have a Users menu in the
sidebar. Clicking on this menu item will display a user
management page where users can be searched, listed and their
roles can be managed.

VI. CONCLUSION & FUTURE WORK

This paper has presented the architecture of the successfully
implemented Daily Challenge mobile system, the related Web
interface, as well as the API server. Furthermore, details have
been provided related to the functionalities accessible for the

different roles of users, and also the technologies used. In
accordance with predefined goals, the application provides
the user multiple challenges on a single interface, and the
web-based application ensures the tools needed for those in
the background to maintain and supervise the content of the
application.

The main priorities of the further development of the
application and the web interface include the connection and
communication between users. Providing users with the ability
to comment on challenges is a planned feature, evaluating
them for each step and when finished, being able to write
reviews and provide ratings. The application could also use
the friend list of Facebook, so everyone will be able to
follow the performance and interests of their friends, even
inviting them to participate. The users could be able to
chat, whether directly or in the context of a challenge, to
promote inter-user communication. An improved ranking list
is also planned, which should encourage users to participate in
many challenges and strengthen the gamification aspect of the
application. With available achievements, challenges should
become more fulfilling, rewarding for the persistent users.

Also included in further development plans is a new role
to moderate the behavior of the users by way of automated
filters. Additionally, administrators should also be allowed to
suspend users or revoke various functionalities from them in
case of negative behavior.

The creation and recommendation of challenges could be
improved with a pre-defined package of usable step types.
The user could assemble challenges through steps utilizing
the capabilities of the smartphone sensors, such as location,
gyroscope, camera, and microphone.

From feedback in early usage, it has also been concluded
that an offline mode could help users progress with their
challenges even without a working Internet connection, being
able to synchronize later when the connection is restored.

REFERENCES

[1] Mike Cantelon et al. Node. js in Action. Manning Publi-
cations, 2017.

[2] Bonnie Eisenman. Learning React Native: Building Na-
tive Mobile Apps with JavaScript. ” O’Reilly Media,
Inc.”, 2015.

[3] Artemij Fedosejev. React. js Essentials. Packt Publishing
Ltd, 2015.

[4] Martin Fowler. Patterns of enterprise application archi-
tecture. Addison-Wesley Longman Publishing Co., Inc.,
2002.

[5] Simon Holmes. Mongoose for Application Development.
Packt Publishing Ltd, 2013.

[6] Luca Mezzalira. “MobX: Simple State Management”.
In: Front-End Reactive Architectures. Springer, 2018,
pp. 129–158.

[7] Mithun Satheesh, Bruno Joseph D’mello, and Jason Krol.
Web Development with MongoDB and NodeJS. Packt
Publishing Ltd, 2015.


