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Abstract— Convolutional neural networks (CNNs) are power-
ful toolkits of machine learning which have proven efficient in
the field of image processing and sound recognition.

In this paper, a CNN system classifying bird sounds is
presented and tested through different configurations and hy-
perparameters. The MobileNet pre-trained CNN model is fine-
tuned using a dataset acquired from the Xeno-canto bird song
sharing portal, which provides a large collection of labeled
and categorized recordings. Spectrograms generated from the
downloaded data represent the input of the neural network.

The attached experiments compare various configurations
including the number of classes (bird species) and the color
scheme of the spectrograms. Results suggest that choosing a color
map in line with the images the network has been pre-trained
with provides a measurable advantage. The presented system is
viable only for a low number of classes.

Keywords-convolutional neural network; bird sound recogni-
tion; transfer learning; audio classification

I. INTRODUCTION

In recent years, algorithmic sound recognition has enjoyed
a steady increase in interest [1], [2]. The popularity of deep
learning and the many types of neural networks have provided
a new unexplored mechanism of approaching such classifica-
tion problems.

Out of the many niche sound categories suitable for this
type of classification, the current research focuses on bird
sounds. We set the target audience as nature enthusiasts and
ornithologists who would benefit from a hands-on way to tell
bird species apart merely by audible traits, as often in the wild
it is difficult to spot an elusive songbird.

The current research uses transfer learning [3] to fine-
tune an existing neural network to recognize bird sounds.
Many such pre-trained networks are taught to recognize gen-
eral features in images. However, audio is represented in
one dimension, while pictures are two-dimensional signals,
therefore a representative transformation is needed for com-
patibility. To this end, we use spectrograms, which are a
visual representation of the magnitude returned by the Short
Time Fourier Transform (STFT)[4]. STFT is a version of
the Discrete Fourier Transform (DFT), which instead of only
performing one DFT on a longer signal, splits the signal into
partially overlapping chunks and performs the DFT on each
using a sliding window. This yields a two-dimensional spectral

representation of an audio slice, where time and frequency
denote the axes. The spectrogram uses a color map to view
the STFT output as an image, which can then be input to an
image-based pre-trained network.

We use the compact and performance oriented Mo-
bileNet [5] as our starting checkpoint. Our experiments pro-
vide a comparative study of relevant configurations of the
system, such as the number of classes and the color map used
in spectrograms.

Extensive research has been conducted in the recent past
dissecting potential approaches to the presented issue. A rise
in interest may be attributed to the annual BirdCLEF [6]
recognition challenge: a biodiversity data evaluation campaign.
The training dataset of BirdCLEF 2017 comprises over 36,000
audio files from 1500 different species, collected from Xeno-
canto, with classes not necessarily having an equal number of
sound samples. The challenge focuses on recognizing single
audible species as well as separating multiple overlayed sounds
in field recordings.

In 2017, Kahl et al. [7] undertake the challenge, with their
experiments measuring 60% accuracy for overlayed sounds
and 68% for recognizing the dominant species. In 2016,
Piczak [8] approaches this problem similarly with 41.2%
accuracy for multi-labeled and 52.9% for single labeled data.
His experiments involve networks trained from scratch, mel-
scaled power spectrograms, an upper frequency cap and noise
filtering.

The winner of the 2016 BirdCLEF challenge, Sprengel et
al. [9] (68.6% for single labeling and 55.5% for multiple
labeling) discuss classification with CNN containing five con-
volutional and one dense layer. As input, spectrograms are
generated from the audio files after splitting the noise from
the actual bird sound.

The literature also proposes alternative or augmentative
methodologies to CNNs, such as unsupervised learning [10],
decision tree based feature selection [11], recurrent CNNs [12]
or Hidden Markov models [13].

Different approaches to visual representation of audio have
also been researched. While spectrograms seem to be an intu-
itive choice [11], using the raw audio data as input [10], mel-
frequency cepstral coefficients (MFCCs) [14] and Constant-
Q transformed spectrograms [15] have also been tested. In



2015, Piczak et al. [16] propose that the spectrogram sur-
passes MFCCs as a sound visualization mechanism in case
of CNNs. In his research involving template matching and
bagging, Lasseck [11] proposes spectrogram downsampling
as a performance improvement without significant detriment
to the quality.

Our methodology deviates from the presented approaches
by incorporating transfer learning using a pre-trained CNN;
using a different geographical region for filtering recordings
from Xeno-canto to that of BirdCLEF; linearly represented
magnitude spectrograms as well as balancing the training data
by using an equal number of recordings per class.

Transfer learning for bird song recognition has recently been
proposed by Fritzler et al. [17] who state that fine-tuning a
pre-trained network may even perform better than one with
no prior training.

The structure of the current document is as follows: Section
II describes the methodology and the workflow of setting
up and fine-tuning a MobileNet architecture based frozen
inference graph. Section ?? discusses the architecture of the
application which provides a way to access the evaluation,
while Section III contains the experiments conducted and the
results thereof. Section IV draws the appropriate conclusions
and discusses possible future improvements.

II. METHODOLOGY

In this section we discuss the general concepts and method-
ologies involved in the forming of the current bird sound
recognition system. The two steps involved in the system setup
(see Figure 1) are the offline training of the CNN using the
appropriate data and the online evaluation for a single sound.

The first step evoked during the model creation is the
scripted gathering of the dataset recordings from Xeno-canto.
Upon download, these recordings arrive in MP3 format; they
are converted to WAV and separated into training and test
datasets (further details in Sections II-B).

This is followed by the preprocessing of the sound files:
the WAV files are split into chunks of equal length and
normalized. In order to work only with segments containing
relevant information, a threshold filtering is applied, discarding
chunks which are not loud enough. A Short-time Fourier
transform (STFT) is then performed on the sounds, followed
by a normalization. Finally, the spectrograms are created by
converting the STFT output into an image using a color map
(see Section II-C).

In order to train the model for classification, the labeled
spectrogram images are grouped into TFRecord format files.
The output of the training phase is an inference graph, which
allows evaluating new incoming spectrograms.

The main application of the trained model is to classify a
single recording of a bird sound. The user records the sound
and uploads it to the server, which converts it into the WAV
format and performs the preprocessing. The output will be 0
or more spectrograms depending on the threshold value; they
represent the input of the inference graph. The results provided
by the evaluation after an averaging are returned to the user.

A. Corpus

Xeno-canto is an open website dedicated to sharing bird
sounds; users upload their own recordings and label them by
genus, species, subspecies, location, type, quality (from A to
E, where A is the best quality of the sound) etc. Sounds
may also be classified as “calls” or “songs”. The calls are
short, alarming bursts males use to signal their territories,
while songs are longer and mainly used by males to attract
female birds. In case the species of the bird is not known,
the uploaded sound may be flagged as a “mystery” and
further descriptions may be provided, so that other users can
assist in identification. Currently the site hosts almost 400,000
recordings spanning over 6,000 hours, representing close to
10,000 species, courtesy of over 4,000 uploaders.

Since many different labels (genus, species and subspecies)
are supported by Xeno-canto, for our experiments we use a
combination of two to define our classes: genus and species.
We include both type of sounds (calls and songs) in the corpus,
but filter based on quality to only include rank A.

The data gathering process for our experiments employ
automated scripts making use of Xeno-canto’s RESTful API 1.
This API returns JSON responses for REST requests, contain-
ing information about the sounds: among others the number
of recordings, species, pages, the current page as well as the
recordings themselves. Some labels allow you to filter between
the recordings such as the country and quality.

B. Automated data download

In order to train the model, a homogeneous dataset is
needed, which contains a considerable amount of labeled
recordings. We automate the selection and download process
with the help of a script employing one of the following
strategies:

• We can provide a file containing the name(s) of the
species; this infers the number of classes.

• The file can be generated, by giving the number of
European bird species we want to download recordings
for.

• We can choose not to specify the names or the number
of bird species, in this case the script will download all
recordings of all European species known by the Xeno-
canto site.

Configurable options include the location where the record-
ings, the generated spectrograms and the TFRecord files are
all stored.

The current experiments apply the second strategy. Given
a number of classes, the script sends requests to the Xeno-
canto API in order to collect all the recordings of European
bird species which have the most recordings labeled with good
quality. It caches the classes with the most recordings for fur-
ther use. It proceeds to count the number of recordings for each
species, saving the minimum count. Only the minimum for
each species is downloaded; for classes with more recordings,

1API described here: https://www.xeno-canto.org/article/153, last visited:
21.04.2018

https://www.xeno-canto.org/article/153
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Fig. 1: Model workflow in the stages of preparation (blue) and evaluation (orange). Certain steps, such as the preprocessing,
overlap(black) during both scenarios.

the used ones are randomly selected. Thus every class will
have the same number of samples to be used for training and
testing.

The downloaded audio is converted into WAV with a sample
rate of 44100Hz and separated into 80% training dataset and
20% test dataset.

C. Sound Preprocessing

During the preprocessing algorithm, the data is normalized
and split into three second long chunks, the last shorter one of
which is discarded. Every segment is evaluated by thresholding
to make sure it is not too quiet: a configurable value is
compared to the RMS gain of the chunk; if the gain is lower
the chunk is discarded.

The remaining segments are subject to a Short Time Fourier
Transform (STFT) to extract spectro-temporal information.
Since the used neural network model needs fixed-size 224x224
pixels input, we use a window size of 448 during the STFT.
We also use a Hamming window with an overlap of 224
(half of the window size, also configurable). After the STFT
is done, we retain only its magnitude, because the phase
information is not needed for the spectrogram portrayal. The

(a) Grayscale color map (b) Jet color map

Fig. 2: Spectrogram of a sound of the bird Emebriza Calandra,
rendered through different color maps.

normalized STFT output is subsampled/decimated to yield an
exact 224x224 matrix. Gamma correction may be applied at
this point, which amplifies middling information on an even
keel, possibly accentuating soft details.

The spectrogram image is rendered using a color map: a
scale of colors mapped to values in the [0, 1] interval. Our
experiments compare the use of two different colors maps (see
Figure 2):



• grayscale - White represents 0, black represents 1, with
shades of gray in-between. This linear representation
should intuitively translate well to machine understand-
ing.

• jet - An RGB color map where blue corresponds to 0,
red is 1 and the values around 0.5 are yellow. This repre-
sentation is often used for illustrating spectrograms, since
it is naturally understandable for human vision. Its non-
linear scale may hinder its potential for computational
understanding.

The spectrogram is saved in PNG format to a configurable
location.

D. Pre-trained networks: TF-Slim and MobileNet

The training and evaluation algorithm of the convolutional
neural network is implemented using the TensorFlow deep
learning framework [18]. It supports computationally demand-
ing parallelizable algorithms while also giving the possibility
of execution on CPU, GPU or TPU.

The experiments are also assisted by the TF-Slim Tensor-
Flow library [19], which provides an easily usable environment
for creating, training and evaluating neural networks. It con-
tains auxiliary functions for writing and reading TFRecords,
creating and evaluating inference graphs and downloading
well known datasets such as CIFAR-10, MNIST and Ima-
geNets. TF-Slim also allows working with popular convolu-
tional neural networks, such as Inception, ResNet, VGG, Mo-
bileNets. TF-Slim provides several public and compatible pre-
trained networks (checkpoints) which greatly reduce training
times [3].

Our experiments use the MobileNet [5] pre-trained network.
The accuracy of the model is assessed to be 70.9% based
on training on the ILSVRC-2012-CLS image classification
dataset. The chosen version of MobileNet accepts 224x224
size colored (RGB, 3 channels) images as input. The reasons
for choosing this particular architecture were as follows: it
was specifically created for mobile devices, it has a relatively
small architecture, and it is fast in evaluation.

The base of its architecture is the Depthwise Separable Con-
volution. This layer separates the conventional convolutional
network into two different layers: a depthwise convolution,
which in this case uses one single filter for each input;
and a 1x1 pointwise convolution, which is applied on the
depthwise convolution. This process executes both filtering
and convolving in two layers, which usually is computed
in one layer. Even though the convolution is performed in
two steps, the computations are more simple, thus the used
computational resources are reduced.

The MobileNet consists of 28 layers. The first layer is
a conventional convolutional network, which is followed by
depthwise convolutional layers and pointwise convolutional
layers. Each convolutional layer is followed by a Batch
Normalization [20] and a ReLU activation function. The last
three layers are the average pooling, fully connected (FC) and
Softmax layers.

E. Training the network

Training the network is a process that requires learning data
as input, and creates a model that can be evaluated by test data.
Our learning and test data is the output of the download and
preprocessing procedure. The program writes these data into
TFRecord files. It is necessary for the TFRecord files in case
of both the learning and the test dataset to contain various
sample of the classes specified. Thus we shuffle our dataset
along with the corresponding tags before writing them into
TFRecord files.

The TFRecord is a file used in Tensorflow. Since it is simple
to use, it is a popular data archiver among Tendorflow users.
It contains informations about the data such as in our case
the spectrograms alongside with the labels (tag of the bird
species), size of the picture and informations about encoding
and decoding. One TFRecord file can contain multiple data
structures described beforehand. We can specify how many
sample of data we want to store in one TFRecord.

Creating the TFRecord files is the last step of preparing the
corpus to train the network. The implementation of algorithm
that performs the training and the pre-trained MobileNet CNN
is provided by the TF-Slim library. Thus our training starts
by a simple function call. In the course of the different
learning processes we performed, the parameters discussed in
III section, are constant, indifferent from the number of classes
or the type of color map used in creating the spectrograms.

Evaluating the trained model is also executed by a function
from TF-Slim. It’s main result is the accuracy of the model.

The output of the training are checkpoints. These files
contain informations about the state of the trained model.
They can be used to continue training from the last training
step with different hyper parameters. An another usage of the
checkpoints are to create inference graphs from them.

Inference graphs are used to classify one single input.
Creating and handling the inference graphs are also resolved
by the TF-Slim package.

III. EXPERIMENTS AND RESULTS

The conducted experiments cover different configurations
in order to observe the efficiency of the network. Parameters
altered between runs include the number of classes (2, 10 and
50) and the color map used for creating the spectrograms. The
latter takes on the values “grayscale” (see Figure 2a) and the
RGB encoded “Jet” (see Figure 2b). This results in 6 different
configurations.

We train networks using each configuration 5 times for
10,000 steps, using fixed hyperparameter values. The learning
rate is set to 0.0001, the weight decay is 0.00004, and the
size of the batches in which we split the dataset is 32. Since
sampling the recordings from the Xeno-canto site during the
download was randomized, the dataset is diversified.

The loss drop of each individual configuration is visualized
on Figure 3. The system shows a steady loss drop in all
scenarios, with no significant difference between the two color
maps. As expected, a higher number of classes leaves the loss
function at higher values.



Figure 4 contains the accuracy and recall values achieved
by the trained models. As expected, the model performs well
for 2 classes, but the accuracy decreases for a higher number
of classes. Already for 10 classes, the accuracy drops below
40% for both color maps.

The trainings based on the Jet color map show higher
accuracies by an average of 7.4%. The MobileNet checkpoints
used in the experiments used a network which had lower layers
specifically pre-trained for color images; this may explain the
better response of the network to the colored spectrograms.
Furthermore, increasing the number of classes widens the gap
in the favor of the Jet color map, making it a more viable
competitor when using more classes.

The 5 different training instances per configuration yield
negligible differences as presented by the minimal deviations
in Figure 4. Thus we can conclude that the influence of the
color map and the class count is reproducible in a stable
manner.

IV. CONCLUSION AND FUTURE WORK

The field of bird sound recognition using machine learning
methods has seen a steady increase in recent years, with most
works focusing on training various neural networks from the
start. As an alternative and possibly more performant solution,
the current research proposed transfer learning: fine-tuning a
pre-trained network using a visual representation of sound; in
our case, spectrograms.

We have successfully demonstrated the viability of the
MobileNet network fine-tuned with images containing data
much different from the images used in its low level pre-
training. Initial experiments show that reasonable accuracies
may be achieved when using only 2 classes.

Our experiments also compare the color maps used in
spectrogram creation. The results suggest that RGB spectro-
grams are more effective than their linear black and white
counterparts, possibly due to the lower layers of MobileNet
being trained on colored images. This difference between the
color and grayscale accuracies increase steadily when using
more classes.

In order to achieve higher accuracies, the following im-
provements should be considered. Using a bigger, more robust
pre-trained convolutional neural network such as ResNet may

(a) 2 classes, Jet (b) 10 classes, Jet (c) 50 classes, Jet

(d) 2 classes, grayscale (e) 10 classes, grayscale (f) 50 classes, grayscale

Fig. 3: Losses reported during the training process
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Fig. 4: Accuracy and recall achieved by our experiments. The
results are averaged over 5 runs for each configuration, with
the standard deviation overlayed.

help accuracies reach larger numbers. To properly differentiate
and compare RGB spectrograms and grayscale spectrograms,
in the case of the gray spectrograms the lower layers should
be trained on grayscale images.

Furthermore, during the preprocessing stage, we propose
noise reduction as well as filtering to discard extreme frequen-
cies not present in bird sounds [8]. Testing different gamma
values could also increase the amount of helpful information
the spectrograms contain.
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