
Argus: Hardware and Software System for
Automatic or Semi-automatic Photo Taking

Zsolt Szécsi
Babeş-Bolyai University

Codespring LLC
Cluj-Napoca

Email: szecsi.zsolt@codespring.ro

Károly Simon
Babeş-Bolyai University

Codespring LLC
Cluj-Napoca

Email: simon.karoly@codespring.ro

Levente Szélyes
Codespring LLC

Cluj-Napoca
Email: szelyes.levente@codespring.ro

Abstract—The article presents the Argus project. The aim of
the project is the development of an automatic photography
system.

Argus is built on a special hardware system (central server,
mini computers with NFC card readers and cameras) and it is
controlled by a specific software system. The software system
contains a server, a web application and a desktop application,
which is running on a Raspberry Pi 2 mini computer.

The architecture of the system is general, so it can be used by
companies from different domains. Photo taking is triggered by
NFC cards, provided as tickets for different locations (adventure
parks, ski resorts, etc.).

As opposed to other similar systems, Argus is built from well-
known, inexpensive hardware components, available to everyone
on the market.

I. INTRODUCTION

The name of the project, Argus, comes from the greek
mythology [1]. Argus was a giant with one hundred eyes,
who saved many times his home, Arcadia. When Zeus had
a relationship with Io, his wife, Hera, abducted Io, making
Argus her guardian. Based on the order of Zeus, Hermes killed
Argus. In tribute of Argus, Hera took his eyes for decorating
the tail of the peacock.

The Argus system tends to be a new giant with many eyes:
an automatized system of cameras, recording some of the best
moments of its users.

In several times people are in situations when they want
to take a photo, but they do not have the possibility to do
this. The reason can be a regulation (e.g. in the case of an
unsafe location) or a physical difficulty (e.g. caused by a
protective equipment), etc. In similar situations a solution can
be provided by automatic photography systems, like Argus.

An example for this situation can be the following: some
friends go to an adventure park. They want to take pictures
while they are climbing, but this is not possible, because
the regulation of the adventure park forbids the cameras and
mobile devices on the ropes. The reason is the safety of the
climbers. Another example can be a ski slope, where the usage
of the camera is also dangerous.

There are other camera systems, for similar situations. For
example, Skiline1 is an automatic photography system used

1Skiline’s homepage: http://www.skiline.cc/

at ski resorts. Another similar system is Hexo+2, which is
working with drones. As opposed to these systems, Argus is
built on well-known, inexpensive hardware components and it
can be easily purchased and installed by companies.

If a company decides to use the Argus system, NFC
(Near Field Communication) card readers and connected Wi-Fi
cameras will be installed to the checkpoints within a specific
location (e.g. adventure park, ski slope, etc.). When a visitor
wants to take a photo, he will touch the NFC card reader
with his ticket, and the Argus system will take the picture.
Photo taking can be triggered based on a predefined scheduling
(configurable on a web interface) or by a specific sensor. The
photo will be uploaded to the Argus server. The user can check
his photos on the Argus website. Here he has the possibility
to access his photos without registration, by indicating the
identifier of his NFC card (printed on his ticket). If he registers
himself into the system, he can see his photos from different
locations ordered into albums. The photos are associated to
users using the NFC card identifiers. When an NFC card is
linked to a user, the photos related to its identifier will be
available only for this user.

At the checkpoints, the NFC card reader is attached to a
Raspberry Pi mini computer, which is communicating with
the cameras connected to the checkpoint and with the central
server. A desktop application is running on these Raspberry
Pi computers, for configuring location- and checkpoint-specific
system parameters (e.g. local Wi-Fi settings, etc.).

The Argus project also publishes a web interface for com-
pany managers. Here the checkpoints and cameras can be
listed and configured (e.g. the scheduling of the cameras). The
system also contains a web interface for system administrators,
for system monitorization and user (company) management.

In the first section of the article the hardware elements of the
Argus project are presented. The second section presents the
tools and technologies used during the development process.
The third part of the article describes the implementation of
the project. Finally, some conclusions and further development
possibilities are presented.

2Hexo+’s homepage: https://hexoplus.com/

http://www.skiline.cc/
https://hexoplus.com/

II. HARDWARE

The Argus system works with some special hardware ele-
ments to realize the photo taking. These hardware components
are listed in this section.

A. GoPro Hero 3 White

The “eyes” of the system are GoPro Hero 3 White (Figure
1) cameras. It is a camera designed to be used during extreme
sports. It has a waterproof case, which is a big advantage in
the case of the Argus system, too. This model is equipped
with a wireless adapter and it publishes a wireless hotspot.

Fig. 1. GoPro Hero 3 White camera

The camera runs a web service, which can receive com-
mands. These commands are the same for all GoPro Hero
models. In this way, if in the future a manager would like to
use a better camera with the Argus system, he can change it
with a new model, without any problems.

B. NXP Explore NFC

The NXP company is one of the pioneers of the NFC tech-
nology. The NXP Explore NFC board (Figure 2) is developed
for Raspberry Pi computers, it can read and write NFC cards.

Fig. 2. NXP Explore NFC board

After the installation, the developer can handle this board
using C or Python programming languages.

C. Raspberry Pi 2

The camera and the NFC card reader board is controlled by
a Raspberry Pi 2 mini computer (Figure II-C). This device can
handle multiple types of sensors, so it could be also a good
solution for further development possibilities.

Fig. 3. Raspberry Pi 2 mini computer

This computer is cheap and powerful (900MHz quad-core
ARM Cortex-A7 CPU, 1GB RAM, 4 USB ports, 40 GPIO
pins, Full HDMI port).

It can be used as a PC, so the configuration of the devices
is easy with a desktop application running on these mini
computers.

D. Edimax Wireless adapter

The connection between the components is resolved through
wireless networks. The Raspberry Pi computer communicates
with the GoPro camera and also with the Argus server. In
this way, this device is connected to two different networks.
One is the wireless hotspot created by the GoPro camera, and
the other is the wireless hotspot used at the given location,
providing internet access.

Fig. 4. Edimax wireless adapter

The Edmix wireless adapter (Figure 4) is designed to be
compatible with the Raspberry Pi. The Raspberry Pi computers
used within the Argus project are equipped with two or more
wireless adapters (one adapter for connecting to the local Wi-
Fi network and one adapter for each camera controlled by a
given Raspberry Pi).

III. TOOLS

The Argus project uses the Mercurial distributed, open-
source version control system.

The software components of the project are implemented
in different programing languages. The Gradle build and
dependency management system is used in the case of the
Java modules, which is based on the Groovy script language.

The “building” of the JavaScript files, which means repeated
actions, like minifying, generating CSS files and copying of
the configuration files, is resolved with Grunt, which is a
JavaScript task runner. The dependency management for this
part is resolved with npm and Bower.

The used project management system is Jira.
On server side data is managed using a MySQL database.

On the desktop client side, the caching mechanism is resolved
using text files. Here the data is saved in encrypted format.

The generation of the basic server project was resolved
with JHipster [2]. Together with a Yeoman generator, this tool
can generate a skeleton implementation for a server system,
based on the Spring framework (Spring IoC, Spring DATA,
Spring Web and Spring Boot) and a web application based on
AngularJS and Bootstrap.

The development environment was the Android Studio. It
has a very strong Gradle support and it could be helpful in
the future, if the project will be extended with a mobile client
application.

IV. TECHNOLOGIES

The Argus project is developed in Java, JavaScript, HTML
and Python programming languages.

The server is based on the Spring framework [3], [4], [5].
This framework resolves the connection with the database
via Spring Data JPA. The dependencies between the compo-
nents are resolved with Spring IoC. The REST interface is
implemented using Spring Web and the REST client is also
implemented using the Spring framework.

The Argus project uses hash identifiers in the URLs, like
the YouTube system. This feature is implemented using the
HashId library.

The web application is developed using the AngularJS
and Bootstrap frameworks. AngularJS is a JavaScript MVC
framework for web applications. With Bootstrap responsive
web user interfaces can be easily implemented.

The Raspberry Pi client is also developed in Java. The
communication with the GoPro camera is resolved using
Apache Http client. The handling of the NFC card reader is
resolved with a Python script, which uses the nxppy library.

Time-related information is handled with Joda time.
The project includes the Swager UI library. It generates a

useful documentation for the REST interface, also giving a
possibility for testing different requests from a web interface.

V. THE ARGUS PROJECT

A. Requirements

The Argus project can be separated into three modules: the
Argus server, the Argus web application and the Argus desktop
application.

The Argus server works like a remote database. It stores
data and it handles user authentication and authorization. The
requirements for this component are the following:

• Authenticate the users.
• Ensure a stateless interface, which can be used by differ-

ent clients.
• Limit the data access properly for different user roles.
• Order the photos into albums based on the NFC card

identifiers.
• Link the NFC cards to users and do not grant access to

the related data for other users.

The Argus web application gives the possibility for the users
to check and to download their photos. This web application
is used by the manager to create companies, places and
checkpoints, and to configure cameras for these checkpoints.
The system administrator also uses this interface to check the
state of the server. The requirements for this component are
the following:

• Add a possibility for the user to register into the system.
• Add a login possibility for the user.
• Display photos linked to one NFC card, without registra-

tion.
• Display albums for the registered user.
• Add a possibility for a registered user to create a new

album using an NFC card identifier.
• List the companies controlled by a manager.
• List the places owned by a company
• List the checkpoints and cameras within a given place.
• Provide checkpoint/camera configuration possibilities for

the managers.
• Display the state of the server for the system administra-

tor.
• Provide user management support for the system admin-

istrator.

The Argus desktop application is running on the Raspberry Pi
mini computers. It helps the company managers to configure
the system and after the configuration it handles the NFC card
reader, it triggers the photo taking and it uploads the photos
to the Argus server. The requirements for this component are
the following:

• Add a possibility for the manager to configure the cre-
dentials for the uploader user.

• Add a possibility for the manager to setup a camera.
• Test the connection with the camera.
• When the Raspberry Pi is connected to the camera, create

a camera entity on the server.
• Add a possibility for the manager to reconfigure the local

system.
• When a user touches the NFC card reader with an NFC

card, trigger a photo taking (based on a pre-configured
scheduling).

• Upload the new photo to the server, together with the
NFC card identifier.

B. User roles

The Argus web application gives possibility for unregistered
users to check and download photos linked with an NFC card
identifier.

There are four roles for registered users: uploader, user,
manager, administrator.

The uploader user is created for the Raspberry Pi computers.
Only authorized uploader users are allowed to upload photos.
This type of user can create a camera and can upload new
photos, he does not have access to the other parts of the
system.

The simple user is the one, who would like to take a photo
with his NFC card, and after that, he wants to check his photos
using the web application. He can see his photos organized in
albums, and he has the possibility to create a new album using
an NFC card identifier.

The manager user represents a company, which uses the
Argus system. A manager can be linked to more than one
companies. He has the possibility to check his companies, to
create new places or new checkpoints under a place. He can
check and configure the installed cameras on the web interface.

The system administrator has access to everything in the
system, he can check the companies, the places and the
checkpoints. He has access to the page, which displays the
state of the server and he can configure the settings of the
server.

C. Architecture

The Argus server has two main component, corresponding
to the architecture diagram (Figure V-C). The Java server
application manages the data stored in the MySQL database.
It also publishes a REST interface. This interface is used
for communication by the web application and the desktop
application. The web application serves as a user friendly
web interface for the users, for the managers and for the
administrators.

The Raspberry Pi desktop application includes two modules:
the GoPro API and the Nxp NFC core.

The GoPro API is a Java module, which implements the
commands for the GoPro Hero 3 White camera. For example
the result of the TAKE_PHOTO command is returned by a
callback, so this module does not block the caller application.

The Nxp NFC core is a Java module, which wraps a
Python script for handling the NFC card reader hardware. The
Python script sends a simple JSON object, which contains the
identifier of the NFC card or the details of the reading error.
This module converts the received JSON objects into Java
objects and notifies the listeners about the NFC card reading.

Another component, which is displayed on the diagram, is
the Argus API. This module is implemented as a part of the
Raspberry Pi desktop application. It resolves the communica-
tion between the server and the desktop client application.

D. Using of the Argus system

The Argus project contains different hardware elements.
When a company decides to use the system, it orders the

Fig. 5. Architecture of Argus system

Raspberry Pi 2 with wireless adapters and the GoPro camera.
The first step is the configuration of the camera. The manager
of the company connects the mini computer to a monitor and
turn it on. The Argus desktop application automatically starts.

The manager has to log in with the credentials of an
uploader user. He logs in into the web application. Selects
the company and creates a new place. On the detailed page of
the place the manager can create a new uploader user (Figure
6). With credentials of this user he can log into the desktop
application.

The desktop application navigates him to an other screen,
where he has to configure the camera(Figure 7).

In Argus system every camera is connected to a checkpoint,
when the manager starts the configuration, he has to add the
identifier of a checkpoint. So goes back to the detailed page
of the place (Figure 6) and creates a new checkpoint. On the

Fig. 6. Argus web application, detailed page of a place

Fig. 7. Argus desktop application, camera configuration screen

detailed page of the checkpoint he can find the identifier of it.
He fill the other fields from the desktop application and presses
the “Notify server about camera” button. In this moment the
desktop application check the connection with the camera and
if it is oke, then creates a camera entity on the server.

The local system is configured. The manager can turn off
the computer or he can try out the system after then he
pressed the “Start service” button. From this moment when the
Raspberry Pi mini computer starts automatically the service,
which can handle the camera and can upload the new photos.
The manager set up the camera on the preferred location and
it is ready to use. The delay of the camera id configurable by
the manager from the web interface.

The user triggers the system with touching of the Raspberry
Pi module with an NFC card. At home he can check and
download his images from the web application after adding
the identifier of his NFC card (Figure 8).

Fig. 8. Argus web application, photos of the user

VI. CONCLUSIONS AND FURTHER DEVELOPMENT

The current state of the Argus project is a prototype and the
development process is still in progress.

The first live test of the system will be in this year in the
Adrenalin Park, an adventure park at Cluj-Napoca. During this
first test the opinion of the users will be registered for making
further improvements.

There are also some known further development possibili-
ties:

• Possibility for managers to configure the system for
making videos.

• Delayed photo uploading, which means that the Rasp-
berry Pi computers accumulate the photos locally and
upload these only one or two times per day to the server.
This mechanism will be useful in locations without a
stable internet connection.

• Error reporting: the implementation of a protocol, which
will help the camera handler client to repeat a post
operation if the connection is lost with the camera. Using
this solution the managers can check the state of the
system on the web interface.

• Integrating social networks into the system: with this
solution the users can login to the system with their
Facebook, Twitter or Google+ accounts, and the system
will give a possibility to share the photos directly from
the web interface.

• Activator application: it could be a tablet application for
the ticket seller for specifying the validity of the NFC
card. In the current version the validity is always one
day. With this new activator application companies can
sell promotional tickets, which are valid for more days.

ACKNOWLEDGEMENT

This research and development was supported by Code-
spring LLC.

REFERENCES

[1] ***, Argus [Online], Available: http://www.britannica.com/EBchecked/topic
/34032/Argus

[2] ***, (2015) JHipster Reference Documentation [Online]. Available:
https://jhipster.github.io/

[3] Rod Johnson, Juergen Hoeller and co., (2004-2012) Spring Framework
Reference Documentation [Online]. Available: http://spring.io/docs

[4] Clarence Ho, Rob Harrop, Pro Spring 3, New York: Springer Sci-
ence+Business Media, Apress Media LLC, 17 April 2012.

http://www.britannica.com/EBchecked/topic/34032/Argus
http://www.britannica.com/EBchecked/topic/34032/Argus
https://jhipster.github.io/
http://spring.io/docs

[5] Russ Miles, Tareq Abedrabbo, Michal Bachman, Nicki Watt, Program-
ming Spring, O’Reilly, 2013

	I Introduction
	II Hardware
	II-A GoPro Hero 3 White
	II-B NXP Explore NFC
	II-C Raspberry Pi 2
	II-D Edimax Wireless adapter

	III Tools
	IV Technologies
	V The Argus project
	V-A Requirements
	V-B User roles
	V-C Architecture
	V-D Using of the Argus system

	VI Conclusions and further development
	References

